The insulin-like growth factor axis, which has been shown to protect cells from apoptosis, plays an essential role in normal cell physiology and in cancer development. The family of insulin-like growth factor binding proteins (IGFBPs) has been shown to have a diverse spectrum of functions in cell growth, death, motility, and tissue remodeling. Among the six IGFBP family members, IGFBP-5 has recently been shown to play an important role in the biology of breast cancer, especially in breast cancer metastasis; however, the exact mechanisms of action remain obscure and sometimes paradoxical. An in-depth understanding of IGFBP-5 would shed light on its potential role as a target for breast cancer therapeutics. IntroductionThere are six well-characterized insulin-like growth factor binding proteins (IGFBP-1 to IGFBP-6) isolated and characterized from a variety of vertebrate species, including humans; the IGFBPs range in size from 216 to 289 amino acids, with molecular masses between 24 and 44 kDa [1,2]. These IGFBPs share a highly conserved protein domain structure consisting of three main parts (N, L, and C domains). The N and C domains contain insulin-like growth factor (IGF)-binding sites, and the L domain carries proteolytic degradation sites. Some other putative IGFbinding proteins with less sequence homology have been found, but they have not been well studied [3]. Numerous studies, however, have found that IGFBPs also function independently of the IGF signaling pathway. IGFBPs may interact with proteins other than IGFs, may be cleaved, may bind to their own receptor on the membrane, and may locate both extracellularly and intracellularly [11]. Importantly, there is increasing evidence that IGFBP-2, IGFBP-3, and IGFBP-5 are important players in the phenotypes of various cancers [2,12,13]. Pertinent to the present review, IGFBP-5 has been associated with breast metastasis [9,14].In the present article, we review literature reports on the functions and regulation of IGFBP-5, and particularly their potential role in breast cancer development and progression. IGFBP-5 gene and protein
p53 polymorphic variants play an important role in the determination of tumor phenotype and characteristics in breast cancer. In this study, we examined three common polymorphisms in p53 gene and their haplotype combinations to assess their potential association with inherited predisposition to breast cancer development, in relations with the protein over-expression and patients' demographic data. A total of 99 patients with breast cancer and 107 age-matched healthy controls were included in the study. Genotypes were determined using PCR-RFLP and DNA sequencing techniques. Evaluation of p53 protein over-expression was also examined by immunohistochemistry. Among three polymorphisms, increased codon 72 Pro allele frequency (p = 0.0067) and the presence of Pro allele were found to be significantly associated with breast cancer (p = 0.013). A significant risk was also found in subjects with combinations of specific haplotypes and genotypes. Most of breast cancer women especially younger than 50 years carry at least one p53 polymorphism (p = 0.001). There was no any association between these three p53 polymorphisms and the protein over-expression, separately or in interaction, with breast cancer. In conclusion, presence of proline allele at codon 72 alone, and its special combinations with other two polymorphisms appear to be a significant risk factor for breast cancer. Determination of well-known p53 polymorphisms might be a good predictor for breast cancer development especially in women younger than 50 years.
Objective: In this study the role of 17b-estradiol (E2) in the regulation of endothelin-1 (ET-1) mRNA expression and secretion was investigated in cultured human umbilical vein endothelial cells (HUVECs). Methods: Endothelial cells were either deprived of or treated 29 27with 17b-estradiol (10 , 10 M) for 48 h. After the incubation, the effect of E2 on ET-1 gene expression was evaluated by Northern blot analysis. ET-1 release into the media was measured by radioimmunoassay after 6 h of incubation under basal conditions and upon stimulation with thrombin (4 U / ml). In addition, the cyclic guanosine 59-monophosphate (cGMP) content of cells was assayed by immunoassay. In order to exclude the role of nitric oxide (NO) in E2-induced effects on endothelin-1 gene expression and secretion, nitric oxide synthase (NOS) inhibitor, N-nitro L-arginine methyl ester (1 mM) (L-NAME) was added to the media of some cultures. Results: 27Incubation of HUVECs with 10 and 10 M E2 for 48 h resulted in a 30 and 47% inhibition of ET-1 mRNA expression, respectively. Incubation with E2 also decreased the basal and thrombin-stimulated ET-1 release while increasing the cGMP content of cells significantly. NOS inhibitor L-NAME increased the release of ET-1 from E2-incubated cells but did not alter the ET-1 release from hormone-deprived cells. However, ET-1 secretion of E2-treated cells were significantly less than the deprived ones. Northern blot analyses also demonstrated that inhibition of NOS only partly attenuated the effect of E2 on ET-1 gene expression. In the presence of 27 L-NAME, treatment with 10 M E2 caused a 12% decrease in ET-1 gene expression. Conclusion:The results demonstrate that E2 may play both direct and indirect role in regulation of ET-1 gene expression and production in human endothelial cells. E2-induced increase in NO but decrease in ET-1 production may partly explain the mechanism of the protective effects of the hormone on the cardiovascular system.
Breast cancer (BCa) is the most common cancer and the second cause of death among women. Phosphoinositide 3-kinase (PI3K) signaling pathway has a crucial role in the cellular processes such as cell survival, growth, division, and motility. Moreover, oncogenic mutations in the PI3K pathway generally involve the activation phosphatidylinositol-4,5-bisphosphate 3-kinase-catalytic subunit alpha (PIK3CA) mutation which has been identified in numerous BCa subtypes. In this review, correlations between PIK3CA mutations and their clinicopathological parameters on BCa will be described. It is reported that PIK3CA mutations which have been localized mostly on exon 9 and 20 hot spots are detected 25-40 % in BCa. This relatively high frequency can offer an advantage for choosing the best treatment options for BCa. PIK3CA mutations may be used as biomarkers and have been major focus of drug development in cancer with the first clinical trials of PI3K pathway inhibitors currently in progress. Screening of PIK3CA gene mutations might be useful genetic tests for targeted therapeutics or diagnosis. Increasing data about PIK3CA mutations and its clinical correlations with BCa will help to introduce new clinical applications in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.