To examine the role of motor areas in speech perception, we carried out a functional magnetic resonance imaging (fMRI) study in which subjects listened passively to monosyllables and produced the same speech sounds. Listening to speech activated bilaterally a superior portion of ventral premotor cortex that largely overlapped a speech production motor area centered just posteriorly on the border of Brodmann areas 4a and 6, which we distinguished from a more ventral speech production area centered in area 4p. Our findings support the view that the motor system is recruited in mapping acoustic inputs to a phonetic code.
Cortical surface-based analysis of fMRI data has proven to be a useful method with several advantages over 3-dimensional volumetric analyses. Many of the statistical methods used in 3D analyses can be adapted for use with surface-based analyses. Operating within the framework of the FreeSurfer software package, we have implemented a surface-based version of the cluster-size exclusion method used for multiple comparisons correction. Furthermore, we have a developed a new method for generating regions of interest on the cortical surface using a sliding threshold of cluster exclusion followed by cluster growth. Cluster size limits for multiple probability thresholds were estimated using random field theory and validated with Monte Carlo simulation. A prerequisite of RFT or cluster-size simulation is an estimate of the smoothness of the data. In order to estimate the intrinsic smoothness of group analysis statistics, independent of true activations, we conducted a group analysis of simulated noise datasets. Because smoothing on a cortical surface mesh is typically implemented using an iterative method, rather than directly applying a Gaussian blurring kernel, it is also necessary to determine the width of the equivalent Gaussian blurring kernel as a function of smoothing steps. Iterative smoothing has previously been modeled as continuous heat diffusion, providing a theoretical basis for predicting the equivalent kernel width, but the predictions of the model were not empirically tested. We generated an empirical heat diffusion kernel width function by performing surface-based smoothing simulations and found a large disparity between the expected and actual kernel widths.
Using functional magnetic resonance imaging (fMRI) repetition suppression, we explored the selectivity of the human action perception system (APS), which consists of temporal, parietal and frontal areas, for the appearance and/or motion of the perceived agent. Participants watched body movements of a human (biological appearance and movement), a robot (mechanical appearance and movement) or an android (biological appearance, mechanical movement). With the exception of extrastriate body area, which showed more suppression for human like appearance, the APS was not selective for appearance or motion per se. Instead, distinctive responses were found to the mismatch between appearance and motion: whereas suppression effects for the human and robot were similar to each other, they were stronger for the android, notably in bilateral anterior intraparietal sulcus, a key node in the APS. These results could reflect increased prediction error as the brain negotiates an agent that appears human, but does not move biologically, and help explain the ‘uncanny valley’ phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.