Abstract:The neurons of the human cerebral cortex are arranged in a highly folded sheet, with the majority of the cortical surface area buried in folds. Cortical maps are typically arranged with a topography oriented parallel to the cortical surface. Despite this unambiguous sheetlike geometry, the most commonly used coordinate systems for localizing cortical features are based on 3-D stereotaxic coordinates rather than on position relative to the 2-D cortical sheet. In order to address the need for a more natural surface-based coordinate system for the cortex, we have developed a means for generating an average folding pattern across a large number of individual subjects as a function on the unit sphere and of nonrigidly aligning each individual with the average. This establishes a spherical surface-based coordinate system that is adapted to the folding pattern of each individual subject, allowing for much higher localization accuracy of structural and functional features of the human brain. Hum. Brain Mapping 8:272-284, 1999. 1999 Wiley-Liss, Inc.
The borders of human visual areas V1, V2, VP, V3, and V4 were precisely and noninvasively determined. Functional magnetic resonance images were recorded during phase-encoded retinal stimulation. This volume data set was then sampled with a cortical surface reconstruction, making it possible to calculate the local visual field sign (mirror image versus non-mirror image representation). This method automatically and objectively outlines area borders because adjacent areas often have the opposite field sign. Cortical magnification factor curves for striate and extrastriate cortical areas were determined, which showed that human visual areas have a greater emphasis on the center-of-gaze than their counterparts in monkeys. Retinotopically organized visual areas in humans extend anteriorly to overlap several areas previously shown to be activated by written words.
We describe a comprehensive linear approach to the problem of imaging brain activity with high temporal as well as spatial resolution based on combining EEG and MEG data with anatomical constraints derived from MRI images. The "inverse problem" of estimating the distribution of dipole strengths over the cortical surface is highly underdetermined, even given closely spaced EEG and MEG recordings. We have obtained much better solutions to this problem by explicitly incorporating both local cortical orientation as well as spatial covariance of sources and sensors into our formulation. An explicit polygonal model of the cortical manifold is first constructed as follows: (1) slice data in three orthogonal planes of section (needle-shaped voxels) are combined with a linear deblurring technique to make a single high-resolution 3-D image (cubic voxels), (2) the image is recursively flood-filled to determine the topology of the gray-white matter border, and (3) the resulting continuous surface is refined by relaxing it against the original 3-D gray-scale image using a deformable template method, which is also used to computationally flatten the cortex for easier viewing. The explicit solution to an error minimization formulation of an optimal inverse linear operator (for a particular cortical manifold, sensor placement, noise and prior source covariance) gives rise to a compact expression that is practically computable for hundreds of sensors and thousands of sources. The inverse solution can then be weighted for a particular (averaged) event using the sensor covariance for that event. Model studies suggest that we may be able to localize multiple cortical sources with spatial resolution as good as PET with this technique, while retaining a much finer grained picture of activity over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.