The damaged area for various structures can be effectively repaired using composite materials. With the effect of impact, damage can occur that cannot be clearly seen in the inner structure of a laminated composite. This can cause delamination and other damage modes in layered composite structures. In this study, three-dimensional dynamic progressive damage analysis was performed in adhesively bonded composite patch-repaired metal notched plates under impact loads to investigate the effect of external composite patch material and thickness. Three-dimensional Hashin damage models were used for the progressive damage model. A user-defined subroutine, VUMAT was written to transfer the damage models to finite element code. By writing a separate script in Python language that relates to the damage models, the weakness in the laminate of the composite patch was transferred to the finite element model with a different degradation model proposed. It was found that plastic deformations occurring after impact damage in the notched metal plates was prevented by the use of composite patches. While glass and carbon fiber exhibit similar behavior at lower impact velocities, the progress of damage is prevented by increasing patch thickness. These behaviors were confirmed by the numerical model and showed an advanced agreement with experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.