It has not been confirmed whether tight junctions (TJs) function as a paracellular permeability barrier in adult human skin. To clarify this issue, we performed a TJ permeability assay using human skin obtained from abdominal plastic surgery. Occludin, a marker protein of TJs, was expressed in the granular layer, in which a subcutaneously injected paracellular tracer, Sulfo-NHS-LC-Biotin (556.59 Da), was halted. Incubation with ochratoxin A decreased the expression of claudin-4, an integral membrane protein of TJs, and the diffusion of paracellular tracer was no longer prevented at the TJs. These results demonstrate that human epidermis possesses TJs that function as an intercellular permeability barrier at least against small molecules (∼550 Da). UVB irradiation of human skin xenografts and human skin equivalents (HSEs) resulted in functional deterioration of TJs. Immunocytochemical staining of cultured keratinocytes showed that occludin was localized into dot-like shapes and formed a discontinuous network when exposed to UVB irradiation. Furthermore, UVB irradiation downregulated the active forms of Rac1 and atypical protein kinase C, suggesting that their inactivation caused functional deterioration of TJs. In conclusion, TJs function as a paracellular barrier against small molecules (∼550 Da) in human epidermis and are functionally deteriorated by UVB irradiation.
Diabetes mellitus induces many pathophysiologic changes in the skin. Even so, dermatologists still lack an animal model of diabetes that enables the direct evaluation of the various functional properties of the skin. Our group induced two types of an experimental type 1 diabetes model in hairless mice by administering either streptozotocin or alloxan, in order to examine the properties of the stratum corneum and epidermis of these animals. The plasma glucose concentrations of the mice at 3 wk after their i.v. injection were significantly higher than those of control mice (streptozotocin, 3.2-fold; alloxan, 3.7-fold). The stratum corneum water content was significantly reduced in both types of diabetic mice, whereas the transepidermal water loss remained unchanged. The amino acid content with normal epidermal profilaggrin processing was either normal or elevated in the stratum corneum of the streptozotocin-treated mice. In contrast, the stratum corneum triglyceride content in the streptozotocin-treated mice was significantly lower than the control level, even though the levels of ceramides, cholesterols, and fatty acids in the stratum corneum were all higher than the control levels. The streptozotocin-treated group also exhibited decreases in basal cell proliferation and epidermal DNA content linked with an increase in the number of corneocyte layers in the stratum corneum, suggesting that the rates of epidermal and stratum corneum turnover were slower in the streptozotocin-treated animals than in the normal controls. In contrast, there were no remarkable changes in any of the epidermal differentiation marker proteins examined. This finding in diabetic mice, namely, reduction in both the epidermal proliferation and stratum corneum water content without any accompanying impairment in the stratum corneum barrier function, is similar to that found in aged human skin. Our new animal model of diabetes will be useful for the study of diabetic dermopathy as well as the mechanisms of stratum corneum moisturization.
We previously introduced a conformational sampling method, a multi-dimensional virtual-system coupled molecular dynamics (mD-VcMD), to enhance conformational sampling of a biomolecular system by computer simulations. Here, we present a new sampling method, subzone-based mD-VcMD, as an extension of mD-VcMD. Then, we further extend the subzone-based method using genetic algorithm (GA), and named it the GA-based mD-VcMD. Because the conformational space of the biomolecular system is vast, a single simulation cannot sample the conformational space throughout.Then, iterative simulations are performed to increase the sampled region gradually. The new methods have the following advantages: (1) The methods are free from a production run: I.e., all snapshots from all iterations can be used for analyses. (2) The methods are free from fine tuning of a weight function (probability distribution function or potential of mean force). ( 3) A simple procedure is available to assign a thermodynamic weight to snapshots sampled in spite that the weight function is not used to proceed the iterative simulations. Thus, a canonical ensemble (i.e., a thermally equilibrated ensemble) is generated from the resultant snapshots. (4) If a poorly-sampled region emerges in sampling, selective sampling can be performed focusing on the poorly-sampled region without breaking the proportion of the canonical ensemble. A free-energy landscape of the biomolecular system is obtainable from the canonical ensemble.
Hydrogen‐bond (H‐bond) interaction energies in α‐helices of short alanine peptides were systematically examined by precise density functional theory calculations, followed by a molecular tailoring approach. The contribution of each H‐bond interaction in α‐helices was estimated in detail from the entire conformation energies, and the results were compared with those in the minimal H‐bond models, in which only H‐bond donors and acceptors exist with the capping methyl groups. The former interaction energies were always significantly weaker than the latter energies, when the same geometries of the H‐bond donors and acceptors were applied. The chemical origin of this phenomenon was investigated by analyzing the differences among the electronic structures of the local peptide backbones of the α‐helices and those of the minimal H‐bond models. Consequently, we found that the reduced H‐bond energy originated from the depolarizations of both the H‐bond donor and acceptor groups, due to the repulsive interactions with the neighboring polar peptide groups in the α‐helix backbone. The classical force fields provide similar H‐bond energies to those in the minimal H‐bond models, which ignore the current depolarization effect, and thus they overestimate the actual H‐bond energies in α‐helices. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.