The authors have recently performed a fluorescence-guided tumor resection procedure by using high-dose fluorescein sodium without any special surgical microscopes for the intraoperative visualization of glioblastoma multiforme (GBM), and they report on the actual procedure and clinicopathological findings. Thirty-two patients with GBMs underwent tumor resection during which this fluorescence-guided procedure was used. Fluorescein sodium (20 mg/kg) was intravenously injected after dural opening at the craniotomy site. The tumor was stained almost homogeneously yellow and the color was intense enough to be readily perceived for resection. The center of the solid lesion was stained a deep yellow and surrounded by a transition zone that was faintly stained. The colored lesion was clearly distinguishable from the unstained zone outside the GBM, particularly in the white matter. Both the deeply and faintly stained regions included endothelial proliferation and dense tumor cells. In the unstained region, less dense tumor cells were consistently revealed; however, no endothelial proliferation could be seen. Gross-total resection (GTR) was successful in 84.4% of the patients who received an injection of fluorescein sodium, which accounted for 100% of those in whom all the visible yellow color (both the deeply and faintly stained regions) was judged to have been resected during operation. Gross-total resection was performed in 100% of the patients who underwent the fluorescence-guided procedure and assigned to Stage I, a GBM stage in which, as a therapeutic policy, the tumor should be resected as radically as possible. The GTR rates in patients who received fluorescein sodium were significantly higher than those in patients who did not (73 patients with GBMs who underwent tumor resection without the fluorescence-guided procedure). Although the extent of surgery was revealed to be one of the significant and independent prognostic factors for GBM, the fluorescein sodium-guided resection procedure was not a significant or independent prognostic factor in this series. This surgical procedure does not require any special surgical microscopic equipment and is simple, safe, useful, readily accomplished, and universally available for resection of GBMs. Its efficacy simplifies the surgical procedure of navigating the stained lesion from the unstained area to achieve GTR of GBMs, which can be demonstrated on magnetic resonance images.
Background: Non-missile traumatic brain injury (nmTBI) without macroscopically detectable lesions often results in cognitive impairments that negatively affect daily life. Aim: To identify abnormal white matter projections in patients with nmTBI with cognitive impairments using diffusion tensor magnetic resonance imaging (DTI). Methods: DTI scans of healthy controls were compared with those of 23 patients with nmTBI who manifested cognitive impairments but no obvious neuroradiological lesions. DTI was comprised of fractional anisotropy analysis, which included voxel-based analysis and confirmatory study using regions of interest (ROI) techniques, and magnetic resonance tractography of the corpus callosum and fornix. Results: A decline in fractional anisotropy around the genu, stem and splenium of the corpus callosum was shown by voxel-based analysis. Fractional anisotropy values of the genu (0.47), stem (0.48), and splenium of the corpus callosum (0.52), and the column of the fornix (0.51) were lower in patients with nmTBI than in healthy controls (0.58, 0.61, 0.62 and 0.61, respectively) according to the confirmatory study of ROIs. The white matter architecture in the corpus callosum and fornix of patients with nmTBI were seen to be coarser than in the controls in the individual magnetic resonance tractography. Conclusions: Disruption of the corpus callosum and fornix in patients with nmTBI without macroscopically detectable lesions is shown. DTI is sensitive enough to detect abnormal neural fibres related to cognitive dysfunction after nmTBI.
BACKGROUND AND PURPOSE:Positron-emission tomography (PET) is a useful tool in oncology. The aim of this study was to assess the metabolic activity of gliomas using 11 C-methionine (MET), [ 18 F] fluorodeoxyglucose (FDG), and 11 C-choline (CHO) PET and to explore the correlation between the metabolic activity and histopathologic features.
The aim of this study was to explore the regional cerebral glucose metabolism (rCM) in patients with chronic stage traumatic brain injury (TBI) compared with normal controls. We also investigated the relationship between regional cerebral glucose metabolism and cognitive function. We performed 2-[(18)F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) study using statistical parametric mapping (SPM) analysis in 36 diffuse axonal injury (DAI) patients (mean age +/- SD, 36.3 +/- 9.8 years). At 6 months or more after head injury, all patients underwent FDG-PET study and neuropsychological batteries to assess cognitive function. Thirty healthy, gender-matched control subjects who were comparable in age were also studied. Between the TBI patients and normal controls, group comparisons showed regional metabolic decreases in the bilateral frontal lobes, temporal lobes, thalamus, as well as the right cerebellum in the TBI group. Only full-scale Intelligence Quotient (IQ) (mean +/- SD, 78.5 +/- 11.9) correlated positively with rCM in the right cingulate gyrus and the bilateral medial frontal gyrus. In other examinations, the correlation was not provided. DAI may induce functional disconnection and decreased neuronal activity, and finally lead to diffuse glucose hypometabolism. Low full-scale IQ scores may be related to significantly different underlying cognitive impairment. In supporting cognitive function following TBI, which showed diffuse cerebral metabolic reduction compared with normal controls, medial prefrontal cortex and anterior cingulate cortex may be an important component.
Background: The cerebral metabolism of patients in the chronic stage of traumatic diffuse brain injury (TDBI) has not been fully investigated. Aim: To study the relationship between regional cerebral metabolism (rCM) and consciousness disturbance in patients with TDBI. Methods: 52 patients with TDBI in the chronic stage without large focal lesions were enrolled, and rCM was evaluated by fluorine-18-fluorodeoxyglucose positron emission tomography (FDG-PET) with statistical parametric mapping (SPM). All the patients were found to have disturbed consciousness or cognitive function and were divided into the following three groups: group A (n = 22), patients in a state with higher brain dysfunction; group B (n = 13), patients in a minimally conscious state; and group C (n = 17), patients in a vegetative state. rCM patterns on FDG-PET among these groups were evaluated and compared with those of normal control subjects on statistical parametric maps. Results: Hypometabolism was consistently indicated bilaterally in the medial prefrontal regions, the medial frontobasal regions, the cingulate gyrus and the thalamus. Hypometabolism in these regions was the most widespread and prominent in group C, and that in group B was more widespread and prominent than that in group A. Conclusions: Bilateral hypometabolism in the medial prefrontal regions, the medial frontobasal regions, the cingulate gyrus and the thalamus may reflect the clinical deterioration of TDBI, which is due to functional and structural disconnections of neural networks rather than due to direct cerebral focal contusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.