In this study, we report for the first time that the addition of methane (CH4) flow rate in the p-type a-SiC: H layer greatly affects the electronic correlation in increasing the conversion efficiency of solar cells. The a-SiC: H p-type layer was grown using Plasma Enhanced Chemical Vapor Deposition (PECVD) on Indium Tin Oxide (ITO) substrate with various methane flow rates. The a-SiC: H p-type layer was characterized including the complex dielectric properties and the complex refractive index using Ellipsometric Spectroscopy (ES), while the surface roughness morphology was used Atomic Force Microscopy (AFM). In sample P-2 there is a change in the form of a decrease in the value of the refractive index < n > and the E0 energy in the lower energy compared to the P-1 sample with a change of 0.3 eV, an increase in the optical gap and a decrease in the value of the real and imaginary dielectric function. While the influence of an increase in the carbon composition of the amorphous network order shows the addition of amorphous tissue disorder. Our results, show that the optical magnitude of the p-type a-SiC: H layer is not only affected by the amount of carbon in the film but also the hydrogen which is thought to contribute.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.