In this work, the imbalances in band gap energy between p-window layer and intrinsic layer (p/i interface) in p-i-n type solar cells to suppress charge recombination adopting with the addition of buffer layer, at p/i interface, namely solar cell structures without buffer (Cell A) and with buffer (Cell B). Using well-practiced AFORS-HET software, performances of Cell A and Cell B structures are evaluated and compared to experimental data. A good agreement between AFORS-HET modelling and experimental data was obtained for Cell A (error = 1.02%) and Cell B (error = 0.07%), respectively. The effects of dopant concentrations of the p-type and n-type were examined with respect to cell B for better performance by analysing the energy band diagram, the electric field distribution, the trapped hole density, the light J-V characteristics, and the external quantum efficiency. The simulated results of an optimised Cell B showed that the highest efficiency of 8.81% (VOC = 1042 mV, JSC = 10.08 mA/cm2, FF = 83.85%) has been obtained for the optimum dopant values of NA = 1.0 x 1019 cm-3 and ND = 1.0 x 1019 cm-3, respectively. A comparison between experimental data and simulation results for Cell B showed that the conversion efficiency can be enhanced from 5.61% to 8.81%, using the optimized values
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.