In this paper, we implement a weak Milstein Scheme to simulate low-dimensional stochastic differential equations (SDEs). We prove that combining the antithetic multilevel Monte-Carlo (MLMC) estimator introduced by Giles and Szpruch with the MLMC approach for weak SDE approximation methods by Belomestny and Nagapetyan, we can achieve a quadratic computational complexity in the inverse of the Root Mean Square Error (RMSE) when estimating expected values of smooth functionals of SDE solutions, without simulating Lévy areas and without requiring any strong convergence of the underlying SDE approximation method. By using appropriate discrete variables this approach allows us to calculate the expectation on the coarsest level of resolution by enumeration, which, for low-dimensional problems, results in a reduced computational effort compared to standard MLMC sampling. These theoretical results are also confirmed by a numerical experiment.
In this work, we will show strong convergence of the Multilevel Monte-Carlo (MLMC) algorithm with split-step backward Euler (SSBE) and backward (drift-implicit) Euler (BE) schemes for nonlinear jump-diffusion stochastic differential equations (SDEs) when the coefficient drift is globally one-sided Lipschitz and the test function is only locally Lipschitz. We also confirm these theoretical results by numerical experiments for the jump-diffusion processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.