We consider the asymptotic option pricing formula under an infinite variance paradigm using a randomized version of the Cox-Ross-Rubinstein binomial option pricing approach. We discuss practical difficulties in applying the asymptotic formula and suggest a non-parametric bootstrap as an estimation technique. Using point process theory, the asymptotic consistency of the bootstrap approach is established under a resampling scheme of m = o(n). We briefly discuss extensions to correlated data and show the option pricing formula may no longer be valid in such settings. Finally, we consider a finite variance setting involving innovations from a variance gamma process. We derive the asymptotic option pricing formula and show that the non-parametric bootstrap is consistent.
In the present paper, starting with the Black-Scholes equations, whose solutions are the values of European options, we describe the exponential jump-diffusion model of Levy process type. Here, a jump-diffusion model for a single-asset market is considered. Under this assumption the value of a European contingency claim satisfies a general "partial integro-differential equation" (PIDE). With a combined compact difference (CCD) scheme for the spatial discretization, a high-order method is proposed for solving exponential jump-diffusion models. The method is sixth-order accurate in space and second-order accurate in time. A known analytical solution to the model is used to evaluate the performance of the numerical scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.