The Dirichlet process can be regarded as a random probability measure for which the authors examine various sum representations. They consider in particular the gamma process construction of Ferguson (1973) and the “stick‐breaking” construction of Sethuraman (1994). They propose a Dirichlet finite sum representation that strongly approximates the Dirichlet process. They assess the accuracy of this approximation and characterize the posterior that this new prior leads to in the context of Bayesian nonpara‐metric hierarchical models.
The beta process has recently been widely used as a nonparametric prior for different models in machine learning, including latent feature models. In this paper, we prove the asymptotic consistency of the finite dimensional approximation of the beta process due to Paisley & Carin (2009). In addition, we derive an almost sure approximation of the beta process. This approximation provides a direct method to efficiently simulate the beta process. A simulated example, illustrating the work of the method and comparing its performance to several existing algorithms, is also included.
In this paper, we develop simple, yet efficient, procedures for sampling approximations of the two-Parameter Poisson-Dirichlet Process and the normalized inverseGaussian process. We compare the efficiency of the new approximations to the corresponding stick-breaking approximations of the two-parameter Poisson-Dirichlet Process and the normalized inverse-Gaussian process, in which we demonstrate a substantial improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.