An ultra-wideband (UWB) filtering-antenna with controllable band notch is reported in this paper. The filtering-antenna consists of a modified monopole antenna and defected microstrip structure (DMS). The monopole antenna is modified using microstrip transition in the feedline and block with a triangular-shape slot on each side of the circular patch to produce wider impedance bandwidth with better return loss. The DMS is constructed using U-shaped slot etched on the feedline to provide band notch and remove WLAN band (5.1-5.8 GHz). A switch is employed in the DMS to control the created band notch. The measured results show that the proposed design exhibits a wide impedance bandwidth with controllable WLAN band rejection, realized peak gain of 4.85 dB and omnidirectional radiation pattern. Therefore, the proposed design is suitable for UWB applications.
This study is a review on controlling an electronic device (Arduino) apply for temperature and soil moisture process using Android based Smart phone application in order to address the issues of flexibility and functionality. Beside, this study in future will also develop a low cost and flexible for agriculture control due to not to incorporate with an expensive components such as high end personal computers. On peak of that, now anyone, from anytime and anywhere can have connectivity for anything and it is expected that these connections will extend and create an entirely advanced dynamic network of the internet of things. Thus, this study is to review several design of smart monitoring system using an embedded micro-web server, with IP connectivity for accessing. There are three principal components in this study, which are an electronic device (Arduino), software development (eclipse), and system prototype internet protocol layer. The aim is to build the web organization and ultimately to combine all three components together. The solution of this whole study is a complete review to design a complete application with an electronic device that can help landlord agriculture to start out a dependable quality product in the marketplace.
This paper proposes a Microwave Imaging System (MIS) for brain stroke detection. In the MIS, the primary challenge is to improve in terms of cost, size, and stroke image quality. Thus, the main contribution of this work is the economy and the compact rotation platform integrated with an array of nine antipodal Vivaldi antenna in circular arrangement and single computer board, Raspberry Pi Module (RPM) as microcontroller developed. The design and fabrication of wideband antenna based on Computer Simulation Technology (CST) software and Rogers RO4350B substrate, which operated from 2.06 GHz to 2.61 GHz. In the RPM, the Python programming language used for regulating the angle of rotation and antenna switching process. The process of receiving reflection signals from the head phantom for each antenna supervised by Single-Pole 8-Throw (SP8T) Radio Frequency (RF) switch. The fabricated head phantom based on the primary tissues of the brain, white matter using inexpensive materials, and located in the middle of the platform. Platform rotation is a combination of wood-based platform with the size 0.36m2 and material Perspex. Then, through an interfacing process between Python script and Vector Network Analyzer (VNA), the raw data in S-Parameters transferred to the MATLAB software for analysis. The fabricated antenna able to realize high directivity, 86.92% efficiency, and 2.45 dBi gain. Overall, the proposed system offers the cost-effective, compact, and able to collect the data effectively around the head phantom that consist of a target clot and without a target clot at 50 different positions. It successfully tracked the presence of stroke clots through color differences in color plots.
This paper describes the development of an aquaponic system using solar panel to control the water pump and air pump based on Peripheral Interface Controller (PIC) technology. Solar power is ideally can be used in Malaysia due to location factor and also give the benefit to the environment as renewable energy. It involves a combination of electrical, electronics and agriculture into one sustainable system which consists of a solar panel, inverter, water pump and air pump. The solar panel is the most cleanest ways to produce electricity. With the average output voltage is 12V while the maximum output voltage produce by the solar panel is 18 V. The voltage depends on light capture by solar panel. Weather can minimize the light capture by solar panel thus affect the overall performance. This project requires a substitution power grid with green energy from solar panel which an inverter is used to convert Direct Current (DC) to Alternate Current (AC) and to step up 12V to 110V or 240V. A microcontroller is used to control the operation of an aquaponic system for switching water pump, air pump, battery charge and discharge state. Based on observation, the output power from inverter has produced 65.55% efficiency and the average output voltage of the solar panel is 16.16 V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.