The use of metal complexes to reduce or inhibit virulence factors of Pseudomonas aeruginosa is a promising strategy for the management and control of infections caused by this multidrug-resistant pathogen. The present study aimed to investigate the anti-quorum sensing activity of sub-minimum inhibitory concentrations (sub-MIC) of copper(II) sulfate pentahydrate-curcumin complex (Cu-CUR), iron(III) nitrate nonahydrate -curcumin complex (Fe-CUR), zinc(II) chloride-curcumin complex (Zn-CUR) and free curcumin (free-CUR) against P. aeruginosa PAO1. Metal-CUR complexes were synthesized and characterized by spectroscopic methods. The effect of sub-MIC (1/4 and 1/16 MIC) concentrations of metal-CUR complexes and free-CUR on cell growth, biofilm formation, motility, alginate and pyocyanin production, H2O2 susceptibility and expression of lasI and lasR genes in PAO1 was determined. MIC of metal-CUR complexes and free-CUR was determined as 62.5 and 125 µg/ml, respectively. Metal-CUR complexes at concentration of 62.5 µg/ml significantly reduced the cell growth to 1.5%–3.3%. Although we did not measure the anti-QS activity of metal-CUR complexes directly against PAO1, they indicated anti-QS activity in C. violaceum CV026. Copper-CUR complex at the concentration of 1/4 MIC showed the greatest inhibitory effect on swarming and twitching motilities, biofilm formation, alginate and pyocyanin production, sensitivity to H2O2 and reduction in the expression levels of lasI and lasR genes (P < 0.001). Considering the biological effects of Cu-CUR complex and its inhibitory activity on virulence factors, it may be used as an effective compound for treatment and control of infections caused by P. aeruginosa.
Despite an increasing surge in application of nanoparticles in industries, there is a serious lack of information concerning their impact on human health and the environment. The present study investigated effects of molybdenum nanoparticles (Mo NPs) injected intraperitoneally into Sprague-Dawley rats at different doses of Mo NPs (5, 10, and 15 mg/kg BW per day) during a period of 28 days. Hematological and biochemical parameters as well as sexual hormones and histopathological examinations of the liver and testis were assessed and compared with control group. The results showed that the serum levels of testosterone decreased significantly in both groups of 10 and 15 mg (Mo NPs)/kg BW in comparison with the control group (p < 0.05). However, there were insignificant differences observed in luteinizing hormone (LH) levels and hematological parameters when compared with the control group (p > 0.05). The results of liver enzymes showed that serum levels of aspartate aminotransferase (AST) decreased significantly in both dosage groups of 5 and 10 mg/kg BW (Mo NPs) when compared with the control group (p < 0.05), and significant decrease obtained in lactate dehydrogenase (LDH) levels at dose of 5 mg/kg BW in comparison with the control group (p < 0.05). The histopathological examination of testis showed a decrease in number of Leydig cells. Also, the number of chronic inflammatory cells increased in portal triad and parenchyma in liver tissue of rats exposed to Mo NPs.
Quorum sensing (QS) inhibition by metal-antibiotic complexes is a promising strategy for the management and control of multidrug resistant Pseudomonas aeruginosa infections. We investigated the anti-quorum sensing activity of sub-minimum inhibitory concentration (sub-MIC) of copper(II) sulfate pentahydrate-ciprofloxacin (Cu-CIP) complex and free ciprofloxacin (free-CIP) against P. aeruginosa PAO1. Copper-CIP complex was synthesized and its characterization was assessed using spectroscopic methods and single crystal X-ray analysis. The effect of sub-MIC (1/4 and 1/16 MIC) concentrations of Cu-CIP and free-CIP on cell growth, biofilm formation, motility, alginate and pyocyanin production, H2O2 susceptibility and expression of QS circuit genes lasI and lasR in PAO1 was determined. Minimum inhibitory concentration of Cu-CIP complex and free-CIP was determined as 0.125 µg/ml. Copper-CIP complex did not show significant effect on the cell growth at concentrations of 1/4 and 1/16 MIC. However, sub-MIC concentrations (1/4 and 1/16 MIC) of Cu-CIP showed the significant reduction in violacein production, motility, biofilm formation, alginate and pyocyanin production and sensitivity to H2O2 in a concentration dependent manner (P < 0.001). Copper-CIP at the concentration of 1/4 MIC showed the greatest reduction in lasI and lasR transcriptional expression (89.5% and 96.2% respectively). Considering the biological effects of Cu-CIP complex and its inhibitory activity on QS related virulence traits at low concentrations (0.03 and 0.007 µg/ml), it may be used as an effective approach in the management of infections caused by P. aeruginosa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.