A novel magnetic field sensor using a nonadiabatic tapered optical fiber (NATOF) interacting with magnetic fluid (MF) nanoparticles is proposed and experimentally demonstrated. The NATOF sensitivity when is subjected to refractive index (RI) measurement in the small range from 1.3380 to 1.3510 was 1260.17 nm/RIU as a refractometer sensor. The NATOF is surrounded by a MF whose RI changes with external magnetic field, which MF is as a cladding of tapered fiber. The output interference spectrum is shifted by the change of the applied magnetic field intensity in the range up to 44 mT with a sensitivity of −7.17 × 10 −2 nm/mT, used only 0.1% of the volume concentration of MF nanoparticles. This direct manipulation of light with magnetic fields provides an approach to develop future sensors relying on electromagnetic interactions.
Theoretical and experimental results of three different high-birefringent fiber loop mirrors with output ports are analyzed. For theoretical model, the Jones matrix analysis is used. The theoretical studies present similar results for all experimental configurations. The last configuration is tested as an interrogation system where the spectral response arises from the combination of the reference signal modulated by the sensor signal. The configuration is characterized in strain with the phase changes recovered from two quadrature phase signals, providing a sensitivity of 16 mrad/ with a resolution of 1.9. Index Terms-High-birefringent fiber loop mirror (Hi-Bi FLM), interferometer, optical fiber sensor, strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.