A review of optical fiber sensing demonstrations based on photonic crystal fibers is presented. The text is organized in five main sections: the first three deal with sensing approaches relying on fiber Bragg gratings, long-period gratings and interferometric structures; the fourth one reports applications of these fibers for gas and liquid sensing; finally, the last section focuses on the exploitation of nonlinear effects in photonic crystal fibers for sensing. A brief review about splicing with photonic crystal fibers is also included.Two main classes of photonic crystal fibres (PCF): index-guiding PCF (a) and photonic bandgap PCF (b).
In vivo measurement, not only in animals but also in humans, is a demanding task and is the ultimate goal in experimental biomechanics. For that purpose, measurements in vivo must be performed, under physiological conditions, to obtain a database and contribute for the development of analytical models, used to describe human biomechanics. The knowledge and control of the mechanisms involved in biomechanics will allow the optimization of the performance in different topics like in clinical procedures and rehabilitation, medical devices and sports, among others. Strain gages were first applied to bone in a live animal in 40's and in 80's for the first time were applied fibre optic sensors to perform in vivo measurements of Achilles tendon forces in man. Fibre optic sensors proven to have advantages compare to conventional sensors and a great potential for biomechanical and biomedical applications. Compared to them, they are smaller, easier to implement, minimally invasive, with lower risk of infection, highly accurate, well correlated, inexpensive and multiplexable. The aim of this review article is to give an overview about the evolution of the experimental techniques applied in biomechanics, from conventional to fibre optic sensors. In the next sections the most relevant contributions of these sensors, for strain and force in biomechanical applications, will be presented. Emphasis was given to report of in vivo experiments and clinical applications.
Abstract-Phase-sensitive optical time domain reflectometry ( OTDR ) is a simple and effective tool allowing the distributed monitoring of vibrations along single-mode fibers. Up to now, OTDRs have been used mostly for the measurement of sub-kHz vibrations, normally in the context of intrusion sensing. In this work, the authors present an experimental and theoretical description of a high-visibility OTDR and its performance when used for ultrasonic vibration measurements. The use of a semiconductor optical amplifier (SOA) in the setup allows to suppress coherent noise and also to improve the spectral response of the pump pulses. These two advantages greatly decrease the detected intra-band noise thus allowing frequency measurements in the limits set by the time of flight of the light pulses while maintaining the simplicity of the scheme, as no post-processing, extremely high coherence lasers or coherent detection methods are required. The sensor was able to measure vibrations of up to 39.5 kHz with a resolution of 5 m over a range which could go up to 1.25 km. This is the first time to our knowledge that a fully distributed measurement of ultrasonic waves was achieved. The statistical behavior of the system was also described theoretically and characterized experimentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.