So far, the optical pulses used in phase-sensitive OTDR (ΦOTDR) were typically engineered so as to have a constant phase along the pulse. In this work, it is demonstrated that by acting on the phase profile of the optical pulses, it is possible to introduce important conceptual and practical changes to the traditional ΦOTDR operation, thus opening a door for new possibilities which are yet to be explored. Using a ΦOTDR with linearly chirped pulses and direct detection, the distributed measurement of temperature/strain changes from trace to trace, with 1mK/4nε resolution, is theoreticaly and experimentaly demonstrated. The measurand resolution and sensitivity can be tuned by acting on the pulse chirp profile. The technique does not require a frequency sweep, thus greatly decreasing the measurement time and complexity of the system, while maintaining the potential for metric spatial resolutions over tens of kilometers as in conventional ΦOTDR. The technique allows for measurements at kHz rates, while maintaining reliability over several hours.
Sparse seismic instrumentation in the oceans limits our understanding of deep Earth dynamics and submarine earthquakes. Distributed acoustic sensing (DAS), an emerging technology that converts optical fiber to seismic sensors, allows us to leverage pre-existing submarine telecommunication cables for seismic monitoring. Here we report observations of microseism, local surface gravity waves, and a teleseismic earthquake along a 4192-sensor ocean-bottom DAS array offshore Belgium. We observe in-situ how opposing groups of ocean surface gravity waves generate double-frequency seismic Scholte waves, as described by the Longuet-Higgins theory of microseism generation. We also extract P- and S-wave phases from the 2018-08-19 Fiji deep earthquake in the 0.01-1 Hz frequency band, though waveform fidelity is low at high frequencies. These results suggest significant potential of DAS in next-generation submarine seismic networks.
Abstract-Phase-sensitive optical time domain reflectometry ( OTDR ) is a simple and effective tool allowing the distributed monitoring of vibrations along single-mode fibers. Up to now, OTDRs have been used mostly for the measurement of sub-kHz vibrations, normally in the context of intrusion sensing. In this work, the authors present an experimental and theoretical description of a high-visibility OTDR and its performance when used for ultrasonic vibration measurements. The use of a semiconductor optical amplifier (SOA) in the setup allows to suppress coherent noise and also to improve the spectral response of the pump pulses. These two advantages greatly decrease the detected intra-band noise thus allowing frequency measurements in the limits set by the time of flight of the light pulses while maintaining the simplicity of the scheme, as no post-processing, extremely high coherence lasers or coherent detection methods are required. The sensor was able to measure vibrations of up to 39.5 kHz with a resolution of 5 m over a range which could go up to 1.25 km. This is the first time to our knowledge that a fully distributed measurement of ultrasonic waves was achieved. The statistical behavior of the system was also described theoretically and characterized experimentally.
BackgroundThere is growing interest in the attachment of proteins to solid supports for the development of supported catalysts, affinity matrices, and micro devices as well as for the development of planar and bead based protein arrays for multiplexed assays of protein concentration, interactions, and activity. A critical requirement for these applications is the generation of a stable linkage between the solid support and the immobilized, but still functional, protein.MethodologySolid supports including crosslinked polymer beads, beaded agarose, and planar glass surfaces, were modified to present an oligoglycine motif to solution. A range of proteins were ligated to the various surfaces using the Sortase A enzyme of S. aureus. Reactions were carried out in aqueous buffer conditions at room temperature for times between one and twelve hours.ConclusionsThe Sortase A transpeptidase of S. aureus provides a general, robust, and gentle approach to the selective covalent immobilization of proteins on three very different solid supports. The proteins remain functional and accessible to solution. Sortase mediated ligation is therefore a straightforward methodology for the preparation of solid supported enzymes and bead based assays, as well as the modification of planar surfaces for microanalytical devices and protein arrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.