This paper presents a novel surveillance system aimed at the detection and classification of threats in the vicinity of a long gas pipeline. The sensing system is based on phase-sensitive optical time domain reflectometry (φ-OTDR) technology for signal acquisition and pattern recognition strategies for threat identification. The proposal incorporates contextual information at the feature level and applies a system combination strategy for pattern classification. The contextual information at the feature level is based on the tandem approach (using feature representations produced by discriminatively-trained multi-layer perceptrons) by employing feature vectors that spread different temporal contexts. The system combination strategy is based on a posterior combination of likelihoods computed from different pattern classification processes. The system operates in two different modes:(1) machine + activity identification, which recognizes the activity being carried out by a certain machine, and (2) threat detection, aimed at detecting threats no matter what the real activity being conducted is. In comparison with a previous system based on the same rigorous experimental setup, the results show that the system combination from the contextual feature information improves the results for each individual class in both operational modes, as well as the overall classification accuracy, with statistically-significant improvements.
Abstract:There is an increasing interest in researchers and companies on the combination of Distributed Acoustic Sensing (DAS) and a Pattern Recognition System (PRS) to detect and classify potentially dangerous events that occur in areas above fiber optic cables deployed along active pipelines, aiming to construct pipeline surveillance systems. This paper presents a review of the literature in what respect to machine learning techniques applied to pipeline surveillance systems based on DAS+PRS (although its scope can also be extended to any other environment in which DAS+PRS strategies are to be used). To do so, we describe the fundamentals of the machine learning approaches when applied to DAS systems, and also do a detailed literature review of the main contributions on this topic. Additionally, this paper addresses the most common issues related to real field deployment and evaluation of DAS+PRS for pipeline threat monitoring, and intends to provide useful insights and recommendations in what respect to the design of such systems. The literature review concludes that a real field deployment of a PRS based on DAS technology is still a challenging area of research, far from being fully solved.
Deep neural networks (DNNs) have gained remarkable success in speech recognition, partially attributed to the flexibility of DNN models in learning complex patterns of speech signals. This flexibility, however, may lead to serious over-fitting and hence miserable performance degradation in adverse acoustic conditions such as those with high ambient noises. We propose a noisy training approach to tackle this problem: by injecting moderate noises into the training data intentionally and randomly, more generalizable DNN models can be learned. This 'noise injection' technique, although known to the neural computation community already, has not been studied with DNNs which involve a highly complex objective function. The experiments presented in this paper confirm that the noisy training approach works well for the DNN model and can provide substantial performance improvement for DNN-based speech recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.