Purpose.Determination of the rock stability along the strike of the mass, where the drift mining of the horizon -480 m is conducted, considering the possibility of using the improved types of supports in the conditions of the 10th Anniversary of Kazakhstan’s Independence mine at the Khromtau field with the substantiation of using the effective type of fastening that increases technical and technological, operational and economic indicators of the mine. Methods. Numerical modelling of the stress-strain state of the rock mass applied at the mine have been performed using the RS2 software in a two-dimensional formulation. The rock mass state, as well as the physical-mechanical properties of mine rocks are determined according to building codes and regulations (SNiP II-94-80), depending on the category of the rock stability. Findings. It has been revealed that the combined supports from rock bolts and shotcrete are the most rational type of fastening in the studied mine. The efficiency and prospects of using the combined supports have been determined, which ensure a decrease in their material consumption and cost while increasing the reliability of mine workings and the labor productivity of miners. The use of combined support allows to increase the economy of materials for support by 1.7 times, as well as to increase the drifting rate by 1.6 times in comparison with the metal support. Originality.The paper proposes a new approach to substantiation of an effective fastening method by comparing the costs when driving horizontal underground mine workings in the mining-and-geological conditions of the 10th Anniversary of Kazakhstan’s Independence mine. Practical implications.The research results can be used when planning mining operations, in particular, stable fastening methods at the 10th Anniversary of Kazakhstan’s Independence mine of the Khromtay deposit, as well as other mining enterprises with similar mining-and-geological conditions.
Purpose. The research purpose is to substantiate the rational parameters of innovative container technology for transporting mine rocks in open pits with account of technological advantages. Methods. The winding machine normal operation was determined by calculation performed. The container metal structure was designed in the environment of the Compass-3D software complex. The structural elements were tested for normal operation using computer modeling methods in the APM WinMachine 9.7 program, which gives the possibility to obtain the strength calculation values. Findings. The results of modeling the stresses on the wall of the container and the frame, as well as the yield strength are presented. The test calculation confirms the technical feasibility for operating the dragline-based mine winding machines. The influence of the container capacity on the performance of the winding machine has been determined and the dependence of the economic efficiency of the container technology introduction at the open pit depth has been revealed. Originality. For the first time, on the basis of computer modeling, the parameters of stress distribution on the container wall have been substantiated when performing a strength calculation. It has been determined that the maximum stress in the container wall is 117.52 N/mm2; the principal stress value is 83.85 N/mm2. The safety factor for yield strength is 1.8. The maximum load acting on the structure is 957.5 kgf, which does not exceed the calculated value. Practical implications. The practical importance is to improve mining efficiency, reduce the cost of transporting rocks and ensure automatic container unloading. The use of replaceable containers in open pits can significantly change the formation principles of shovels and transport complexes, increase their performance and the efficiency of shovels in the main processes.
Purpose. Predicting the formation of a stress-strain state (SSS) in the rock mass within the boundaries of influence of stope operations on the horizon -480 m in axes 2028 at the 10th Anniversary of Kazakhstans Independence (DNK) Mine. Methodology. An engineering-geological data on the host rocks properties are analyzed based on the international ISRM standard. Numerical modelling of the rock mass stress-strain state and the calculation of the load-bearing capacity of the compound support (roof-bolt+shotcrete+mesh) and arch support used at the mine are performed with the help of the RS2 software. This program, based on the Finite Element Method in a two-dimensional formulation, makes it possible to take into account a significant number of factors influencing the rock mass state. Findings. The calculations performed indicate that the support resistance is incommensurably low in comparison with the values of the initial stress field components in the rock mass. In such conditions, it may be more effective to strengthen the mass in the vicinity of mine working than setting more frames or using more massive support profiles. Originality. The paper presents the results of mathematical modeling and calculation of the stress-strain state of the underground supporting aquifer rock mass structures developed for complex mining-and-geological and geomechanical conditions of driving, supporting and operating mine workings on deep horizons of the mines at Donskoy Ore Mining and Processing Plant. Based on the performed research, the preliminary (advanced) strengthening of the border rock mass in the zone of inelastic (destructive) deformations has been substantiated, as a priority method to control the stability of mine workings. Practical value. The research results can be used when creating a geomechanical model of the field and designing stable parameters of mine working support.
Purpose. Predicting the stress-strain state (SSS) of the rock mass in the zone of stope operations influence using the self-caving mining system and the calculation of the load-bearing capacity of mine workings support at the 10th Anniversary of Kazakhstan’s Independence mine. Methods. An engineering-geological data complex of the host rocks properties has been analyzed. Numerical modelling of the rock mass stress-strain state and the calculation of the load-bearing capacity of the support types used at the mine have been performed with the help of the RS2 software. This program, based on the Finite Element Method in a two-dimensional formulation, makes it possible to take into account a significant number of factors influencing the mass state. The Hoek-Brown model with its distinctive advantage of nonlinearity is used as a model for the mass behaviour. Findings. The values of the main stresses and load on the support have been obtained. According to the numerical analysis results of the rock mass stress-strain state at a depth of 900 m (horizon -480 m), the principal stresses are close to hydrosta-tic ones σ1 = σ2 = σz = 24.8 MPa. Predicting assessment of mine workings stability margin is performed before and after stope operations. Based on its results, it can be assumed that the stability margin of the mine workings driven in the stope zone is below the minimum permissible, therefore, caving and an increase in the load on the support are possible. Abutment pressure on mine workings support at a mining depth of 900 m (-480 m) has been calculated. The parameters of support in mine workings driven at the horizon -480 m have been calculated. Originality.The nature and peculiarities of patterns of the stress-strain state formation within the boundaries of various stope operations influence in blocks 20-28 at the horizon -480 m have been determined. The quantitative assessment of the values of loads on the support of haulage cross-cuts of the horizon mining is given. Practical implications. The research results can be used for creating a geomechanical model of the field and to design stable parameters of mine workings support. Keywords: stress-strain state, principal stresses, support, mine, ore, rock mass
Purpose. The research purpose is to study the effectiveness of artificial maintenance of the mined-out space based on the use of cable bolts to reduce the dilution coefficient when mining low-thickness ore bodies. Methods. Geotechnical mapping of the rock mass according to the Q, RMR, RQD and GSI rating classifications is conducted, as well as a linear survey of the fracture system in the hanging wall and footwall rocks is performed using a rock compass and the GEO ID application. Numerical analysis by the limit equilibrium method in the Unwedge software package is applied to determine the safety factor of a mass divided by fractures into wedges. Using a Schmidt test hammer, the uniaxial compressive strength of the mass rocks has been determined. The full-scale studies have been conducted using cable support in the conditions of the Akbakai deposit. Findings. It has been revealed that the footwall rocks are in a stable state, while the safety factor of the hanging wall rocks is 0.98, which requires artificial maintenance using cable bolts. The cable support parameters are calculated taking into account nonuniform distribution of horizontal and vertical stresses in the rock mass. It has been determined that when strengthening the hanging wall with cable bolts in inclined veins with a dip angle of up to 40º, the average ore dilution is 66.1%, and that of previously mined without fastening is 68.7%. In similar experiments in steep-dipping veins with a dip angle of more than 60º, dilution decreases from 62.8 to 48.7%. Originality. It has been revealed that in the conditions of the Akbakai deposit, cable fastening of the hanging wall rocks is effective at an ore deposit dip angle of more than 60º, at which the mined ore dilution coefficient decreases. Practical implications. The research results can be used to increase the stability of hanging wall rocks when mining low-thickness ore bodies with a sublevel caving system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.