AbstrakLatar Belakang penelitian ini dibuat dimana semakin meningkatnya kebutuhan listrik di setiap kelompok tarif. Yang dimaksud dengan kelompok tarif dalam penelitian ini adalah kelompok tarif sosial, kelompok tarif rumah tangga, kelompok tarif bisnis, kelompok tarif industri dan kelompok tarif pemerintah. Prediksi merupakan kebutuhan penting bagi penyedia tenaga listrik dalam mengambil keputusan berkaitan dengan ketersediaan energi listik. Dalam melakukan prediksi dapat dilakukan dengan metode statistik maupun kecerdasan buatan. ARIMA merupakan salah satu metode statistik yang banyak digunakan untuk prediksi dimana ARIMA mengikuti model autoregressive (AR) moving average (MA). Syarat dari ARIMA adalah data harus stasioner, data yang tidak stasioner harus distasionerkan dengan differencing. Selain metode statistik, prediksi juga dapat dilakukan dengan teknik kecerdasan buatan, dimana dalam penelitian ini jaringan syaraf tiruan backpropagation dipilih untuk melakukan prediksi. Dari hasil pengujian yang dilakukan selisih MSE ARIMA, JST dan penggabungan ARIMA, jaringan syaraf tiruan tidak berbeda secara signifikan. Kata Kunci— ARIMA, jaringan syaraf tiruan, kelompok tarif. AbstractBackground this research was made where the increasing demand for electricity in each group. The meaning this group is social, the household, business, industry groups and the government fare. Prediction is an important requirement for electricity providers in making decisions related to the availability of electric energy. In doing predictions can be made by statistical methods and artificial intelligence. ARIMA is a statistical method that is widely used to predict where the ARIMA modeled autoregressive (AR) moving average (MA). Terms of ARIMA is the data must be stationary, the data is not stationary should be stationary use differencing. In addition to the statistical method, predictions can also be done by artificial intelligence techniques, which in this study selected Backpropagation neural network to predict. From the results of tests made the difference in MSE ARIMA, ANN and merging ARIMA, artificial neural networks are not significantly different. Keyword—ARIMA, neural network, tarif groups
AbstrakAutomatic Question Generation (AQG) adalah sistem yang dapat membangkitkan pertanyaan secara otomatis dari teks atau dokumen dengan menggunakan metode atau pola-pola tertentu. Diharapkan sistem AQG yang dikembangkan bekerja seperti halnya manusia membuat pertanyaan setelah diberikan suatu teks. Manusia dapat membuat pertanyaan, dikarenakan manusia dapat memahami teks yang diberikan dan berdasarkan pengetahuanpengetahuan yang dimilikinya. Untuk mengembangkan sistem AQG penelitian ini, dilakukan kombinasi beberapa metode diantaranya algoritme Naive Bayes Classifier untuk mengklasifikasikan kalimat ke dalam jenis kalimat non-factoid. Chunking labelling untuk memberikan label pada masing-masing kalimat dari hasil klasifikasi dan pendekatan template untuk mencocokan hasil kalimat dengan template pertanyaan yang dibuat. Hasil pertanyaan yang dihasilkan oleh sistem akan diukur berdasarkan paramater yang telah ditentukan yang didasarkan atas pengukuran recall, precision dan F-Measure. Dengan adanya sistem AQG ini diharapkan dapat membantu guru mata pelajaran Biologi untuk membuat pertanyaan secara otomatis dan efektif serta efisien. Kata kunci: Automatic Question Generation (AQG), Naive Bayes Classifier, Chunking Labelling AUTOMATIC QUESTION GENERATION FROM INDONESIAN TEXT DOCUMENT BASED ON NON-FACTOID QUESTION
Research related schema matching has been conducted since last decade. Few approach related schema matching has been conducted with various methods such as neuron network, feature selection, constrain based, instance based, linguistic, and so on. Some field used schema matching as basic model such as e-commerce, e-business and data warehousing. Implementation of linguistic approach itself has been used a long time with various problem such as to calculated entity similarity values in two or more schemas. The purpose of this paper was to provide an overview of previous studies related to the implementation of the linguistic approach in the schema matching and finding gap for the development of existing methods. Futhermore, this paper focused on measurement of similarity in linguistic approach in schema matching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.