Improving the safety efficacy ratio of existing drugs is a current challenge to be addressed rather than the development of novel drugs which involve much expense and time. The efficacy of drugs is affected by a number of factors such as their low aqueous solubility, unequal absorption along the gastrointestinal (GI) tract, risk of degradation in the acidic milieu of the stomach, low permeation of the drugs in the upper GI tract, systematic side effects, etc. This review aims to enlighten readers on the role of pH sensitive hydrogels in drug delivery, their mechanism of action, swelling, and drug release as a function of pH change along the GI tract. The basis for the selection of materials, their structural features, physical and chemical properties, the presence of ionic pendant groups, and the influence of their pK a and pK b values on the ionization, consequent swelling, and targeted drug release are also highlighted.
Polypropylene/E-glass fiber/nanoclay were compounded with a twin-screw extruder and injection molded. Thermal, dynamic mechanical, and impact tests were carried out. Differential scanning calorimetry investigations showed that the incorporation of nanoclay into polypropylene/glass fiber composite shifted the melting temperature (T m ) to higher values. The degree of crystallinity (X c ) was strongly influenced by the presence of the glass fiber and nanoclay in the matrix. Dynamic mechanical analysis showed an increase in storage modulus (E 0 ); indicating higher stiffness of the hybrid composites when compared to the glass fiber composites and the virgin matrix. From the tan curves, a strong influence of glass fiber and nanoclay content on the magnitude of tan max value was observed. Impact test showed a reduction in the critical strain energy release rate, G c for hybrid composites with higher nanoclay loading. The stress intensity factor, K c values showed insignificant effect with the presence of nanoclay and GF.
BackgroundMetal tungstates have attracted much attention due to their interesting structural and photoluminescence properties. Depending on the size of the bivalent cation present, the metal tungstates will adopt structures with different phases. In this work, three different phases of metal tungstates MWO4 (M= Ba, Ni and Bi) were synthesized via the sucrose templated method.ResultsThe powders of BaWO4 (tetragonal), NiWO4 (monoclinic) and Bi2WO6 (orthorhombic) formed after calcination temperatures of 750, 650 and 600°C for 4 h respectively are found to be crystalline and exist in their pure phase. Based on Scherrer estimation, their crystallite size are of nanosized. BET results showed NiWO4 has the highest surface area. BaWO4 exhibited less Raman vibrations than the NiWO4 because of the increased lattice symmetry but Bi2WO6 showed almost the same Raman vibrations as BaWO4. From the UV-vis spectra, the band gap transition of the metal tungstates are of the order of BaWO4 > Bi2WO6 > NiWO4. Broad blue-green emission peaks were detected in photoluminescence spectra and the results showed the great dependence on morphology, crystallinity and size of the metal tungstates.ConclusionThree different phases of metal tungstates of BaWO4 (scheelite), NiWO4 (wolframite) and Bi2WO6 (perovskite layer) in their pure phase were successfully prepared by the simple and economical sucrose-templated method. The highest surface area is exhibited by NiWO4 while largest band gap is shown by BaWO4. These materials showed promising optical properties.
Glass fiber-reinforced PP composites compatibilized with maleic anhydride grafted polypropylene (MAPP) were compounded with a twin-screw extruder and injection molded. The composite specimens were subjected to DSC, DMA, tensile, and flexural property characterizations. DSC results showed that the presence of glass fiber loading and MAPP produced insignificant effect on the melting temperature of the composites. The melting enthalpy was decreased with glass fiber loadings, but no significant change was noted in the crystalline peak temperatures (T c ). Incorporation of the compatibilizer led to a reduction in T c . Incorporation of glass fiber reduced the crystalline enthalpy of compatibilized and uncompatibilized systems. DMA results showed that composite properties were affected by the presence of the compatibilizer at low fiber loading ( 14% V f ). Tensile and flexural properties also showed sensible improvement of compatibilized against uncompatibilized composite systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.