BackgroundMetal tungstates have attracted much attention due to their interesting structural and photoluminescence properties. Depending on the size of the bivalent cation present, the metal tungstates will adopt structures with different phases. In this work, three different phases of metal tungstates MWO4 (M= Ba, Ni and Bi) were synthesized via the sucrose templated method.ResultsThe powders of BaWO4 (tetragonal), NiWO4 (monoclinic) and Bi2WO6 (orthorhombic) formed after calcination temperatures of 750, 650 and 600°C for 4 h respectively are found to be crystalline and exist in their pure phase. Based on Scherrer estimation, their crystallite size are of nanosized. BET results showed NiWO4 has the highest surface area. BaWO4 exhibited less Raman vibrations than the NiWO4 because of the increased lattice symmetry but Bi2WO6 showed almost the same Raman vibrations as BaWO4. From the UV-vis spectra, the band gap transition of the metal tungstates are of the order of BaWO4 > Bi2WO6 > NiWO4. Broad blue-green emission peaks were detected in photoluminescence spectra and the results showed the great dependence on morphology, crystallinity and size of the metal tungstates.ConclusionThree different phases of metal tungstates of BaWO4 (scheelite), NiWO4 (wolframite) and Bi2WO6 (perovskite layer) in their pure phase were successfully prepared by the simple and economical sucrose-templated method. The highest surface area is exhibited by NiWO4 while largest band gap is shown by BaWO4. These materials showed promising optical properties.
This paper focuses on the conductivity and transport properties of chitosan-based solid biopolymer electrolytes containing ammonium thiocyanate (NH 4 SCN). The sample containing 40 wt% NH 4 SCN exhibited the highest conductivity value of (1.81 ± 0.50) × 10 −4 S cm −1 at room temperature. Conductivity has increased to (1.51 ± 0.12) × 10 −3 S cm −1 with the addition of 25 wt% glycerol. The temperature dependence of conductivity for both salted and plasticized systems obeyed the Arrhenius rule. The activation energy (E a) was calculated for both systems and it is found that the sample with 40 wt% NH 4 SCN in the salted system obtained an E a value of 0.148 eV and that for the sample containing 25 wt% glycerol in the plasticized system is 0.139 eV. From the Fourier transform infrared studies, carboxamide and amine bands shifted to lower wavenumbers, indicating that chitosan has interacted with NH 4 SCN salt. Changes in the CO stretching vibration band intensity are observed at 1067 cm −1 with the addition of glycerol. The Rice and Roth model was used to explain the transport properties of the salted and plasticized systems.
A polymer electrolyte system based on chitosan complexed with ammonium bromide (NH 4 Br) salt was prepared by the solution cast technique. 30 wt% NH 4 Br added electrolyte gave a room temperature conductivity of (4.38 ± 1.26) × 10 −7 S cm −1 and increased to (2.15 ± 0.47) × 10 −4 S cm −1 with addition of 40 wt% glycerol. The dependence of the conductivity on temperature proves that both chitosan-NH 4 Br and chitosan-NH 4 Br-glycerol systems are Arrhenian. The activation energy (E a) value for 70 wt% chitosan-30 wt% NH 4 Br film is 0.31 eV and the E a value for 42 wt% chitosan-18 wt% NH 4 Br-40 wt% glycerol film is 0.20 eV. The carboxamide band at 1640 cm −1 and the amine band at 1549 cm −1 in the spectrum of pure chitosan film shifted to 1617 and 1516 cm −1 , respectively, in the spectrum of 70 wt% chitosan-30 wt% NH 4 Br film, indicating the occurrence of complexation between polymer and salt. The band at 1024 cm −1 in the pure chitosan film spectrum, which corresponds to the CO stretching vibration, shifted to lower wavenumbers on addition of salt. A new band appears at 997 cm −1 on addition of 40 wt% glycerol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.