Soybean (Glycine max (L.) Merr.) is an important crop that provides a sustainable source of protein and oil worldwide. Soybean cyst nematode (Heterodera glycines Ichinohe) is a microscopic roundworm that feeds on the roots of soybean and is a major constraint to soybean production. This nematode causes more than US$1 billion in yield losses annually in the United States alone, making it the most economically important pathogen on soybean. Although planting of resistant cultivars forms the core management strategy for this pathogen, nothing is known about the nature of resistance. Moreover, the increase in virulent populations of this parasite on most known resistance sources necessitates the development of novel approaches for control. Here we report the map-based cloning of a gene at the Rhg4 (for resistance to Heterodera glycines 4) locus, a major quantitative trait locus contributing to resistance to this pathogen. Mutation analysis, gene silencing and transgenic complementation confirm that the gene confers resistance. The gene encodes a serine hydroxymethyltransferase, an enzyme that is ubiquitous in nature and structurally conserved across kingdoms. The enzyme is responsible for interconversion of serine and glycine and is essential for cellular one-carbon metabolism. Alleles of Rhg4 conferring resistance or susceptibility differ by two genetic polymorphisms that alter a key regulatory property of the enzyme. Our discovery reveals an unprecedented plant resistance mechanism against a pathogen. The mechanistic knowledge of the resistance gene can be readily exploited to improve nematode resistance of soybean, an increasingly important global crop.
Background: Soybean (Glycine max L. Merr.) is an important nitrogen-fixing crop that provides much of the world's protein and oil. However, the available tools for investigation of soybean gene function are limited. Nevertheless, chemical mutagenesis can be applied to soybean followed by screening for mutations in a target of interest using a strategy known as Targeting Induced Local Lesions IN Genomes (TILLING). We have applied TILLING to four mutagenized soybean populations, three of which were treated with ethyl methanesulfonate (EMS) and one with Nnitroso-N-methylurea (NMU).
Mitochondrial serine hydroxymethyltransferase (SHMT), combined with glycine decarboxylase, catalyzes an essential sequence of the photorespiratory C 2 cycle, namely, the conversion of two molecules of glycine into one molecule each of CO 2 , NH 4 1 , and serine. The Arabidopsis (Arabidopsis thaliana) mutant shm (now designated shm1-1) is defective in mitochondrial SHMT activity and displays a lethal photorespiratory phenotype when grown at ambient CO 2 , but is virtually unaffected at elevated CO 2 . The Arabidopsis genome harbors seven putative SHM genes, two of which (SHM1 and SHM2) feature predicted mitochondrial targeting signals. We have mapped shm1-1 to the position of the SHM1 gene (At4g37930). The mutation is due to a G / A transition at the 5# splice site of intron 6 of SHM1, causing aberrant splicing and a premature termination of translation. A T-DNA insertion allele of SHM1, shm1-2, and the F 1 progeny of a genetic cross between shm1-1 and shm1-2 displayed the same conditional lethal phenotype as shm1-1. Expression of wild-type SHM1 under the control of either the cauliflower mosaic virus 35S or the SHM1 promoter in shm1-1 abrogated the photorespiratory phenotype of the shm mutant, whereas overexpression of SHM2 or expression of SHM1 under the control of the SHM2 promoter did not rescue the mutant phenotype. Promoter-b-glucuronidase analyses revealed that SHM1 is predominantly expressed in leaves, whereas SHM2 is mainly transcribed in the shoot apical meristem and roots. Our findings establish SHM1 as the defective gene in the Arabidopsis shm1-1 mutant.
The rhg1 gene or genes lie at a recessive or co-dominant locus, necessary for resistance to all Hg types of the soybean (Glycine max (L.) Merr.) cyst nematode (Heterodera glycines I.). The aim here was to identify nucleotide changes within a candidate gene found at the rhg1 locus that were capable of altering resistance to Hg types 0 (race 3). A 1.5 +/- 0.25 cM region of chromosome 18 (linkage group G) was shown to encompass rhg1 using recombination events from four near isogenic line populations and nine DNA markers. The DNA markers anchored two bacterial artificial chromosome (BAC) clones 21d9 and 73p6. A single receptor like kinase (RLK; leucine rich repeat-transmembrane-protein kinase) candidate resistance gene was amplified from both BACs using redundant primers. The DNA sequence showed nine alleles of the RLK at Rhg1 in the soybean germplasm. Markers designed to detect alleles showed perfect association between allele 1 and resistance to soybean cyst nematode Hg types 0 in three segregating populations, fifteen additional selected recombination events and twenty-two Plant Introductions. A quantitative trait nucleotide (QTN) [corrected] in the RLK at rhg1 was inferred that alters A87 to V87 in the context of H274 rather than N274. [corrected] Contiguous DNA sequence of 315 kbp of chromosome 18 (about 2 cM) contained additional gene candidates that may modulate resistance to other Hg-types including a variant laccase, a hydrogen-sodium ion antiport and two proteins of unknown function. A molecular basis for recessive and co-dominant resistance that involves interactions among paralagous disease-resistance genes was inferred that would improve methods for developing new nematode-resistant soybean cultivars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.