There are high technological and software demands associated with conducting brain-computer interface (BCI) research. In order to accelerate development and accessibility of BCI, it is worthwhile to focus on open-source and desired tooling. Python, a prominent computer language, has emerged as a language of choice for many research and engineering purposes. In this manuscript, we present BciPy, an open-source, Python-based software for conducting BCI research. It was developed with a focus on restoring communication using event-related potential (ERP) spelling interfaces, however it may be used for other non-spelling and non-ERP BCI paradigms. Major modules in this system include support for data acquisition, data queries, stimuli presentation, signal processing, signal viewing and modeling, language modeling, task building, and a simple Graphical User Interface (GUI).
In stochastic linear/non-linear active dynamic systems, states are estimated with the evidence through recursive measurements in response to queries of the system about the state to be estimated. Therefore, query selection is essential for such systems to improve state estimation accuracy and time. Query selection is conventionally achieved by minimization of the evidence variance or optimization of various information theoretic objectives. It was shown that optimization of mutual information-based objectives and variance-based objectives arrive at the same solution. However, existing approaches optimize approximations to the intended objectives rather than solving the exact optimization problems. To overcome these shortcomings, we propose an active querying procedure using mutual information maximization in recursive state estimation. First we show that mutual information generalizes variance based query selection methods and show the equivalence between objectives if the evidence likelihoods have unimodal distributions. We then solve the exact optimization problem for query selection and propose a query (measurement) selection algorithm. We specifically formulate the mutual information maximization for query selection as a combinatorial optimization problem and show that the objective is sub-modular, therefore can be solved efficiently with guaranteed convergence bounds through a greedy approach. Additionally, we analyze the performance of the query selection algorithm by testing it through a brain computer interface typing system.
Query selection for latent variable estimation is conventionally performed by opting for observations with low noise or optimizing information theoretic objectives related to reducing the level of estimated uncertainty based on the current best estimate. In these approaches, typically the system makes a decision by leveraging the current available information about the state. However, trusting the current best estimate results in poor query selection when truth is far from the current estimate, and this negatively impacts the speed and accuracy of the latent variable estimation procedure. We introduce a novel sequential adaptive action value function for query selection using the multi-armed bandit (MAB) framework which allows us to find a tractable solution. For this adaptive-sequential query selection method, we analytically show: (i) performance improvement in the query selection for a dynamical system, (ii) the conditions where the model outperforms competitors. We also present favorable empirical assessments of the performance for this method, compared to alternative methods, both using Monte Carlo simulations and human-in-the-loop experiments with a brain computer interface (BCI) typing system where the language model provides the prior information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.