This work focuses on the weight function optimization in high dimensional model representation (HDMR) via constancy maximization. There are a lot of circumstances where HDMR's weight function becomes completely flexible in its factors. The univariate coordinate changes which can be constructed to produce nonnegative factors in the integrands of HDMR component, are perhaps the most important ones of these cases. Here, the weight function is considered as the square of a linear combination of certain basis functions spanning an appropriately chosen Hilbert space. Then, the coefficients of these linear combinations are determined to maximize the HDMR's constant term contribution to the function. Although the resulting equations are nonlinear we could have been able to approximate the solutions by using recently proven fluctuationlessness theorem on matrix representations appearing in the equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.