The thrombospondins (TSPs) are a family of 5 distinct gene products designated TSP1, -2, -3, -4, and COMP, for cartilage oligomeric matrix protein. TSP1, the prototypical member, is a trimeric extracellular matrix molecule implicated in cell migration and development. TSP1 trimer formation is mediated by interchain disulfide linkage involving two NH2-terminal cysteines. TSP3, a recent addition to the family, is a developmentally regulated heparin binding protein that is similar in sequence to the COOH terminus of TSP1 but has a distinct NH2 terminus. This has raised the question of the oligomeric nature of TSP3 and identification of the cysteine residues involved in oligomer formation. We demonstrate, using a combination of deletional and site-directed mutagenesis and rotary shadowing electron microscopy, that TSP3, like TSP4 and COMP, is a pentameric molecule. TSP3 is held together by interchain disulfide linkage involving just two cysteine residues, Cys-245 and Cys-248.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.