An Android smartphone contains built-in and externally downloaded applications that are used for entertainment, finance, navigation, communication, health and fitness, and so on. The behaviour of granting permissions requested by apps might expose the Android smartphone user to privacy risks. The existing works lack a formalized mathematical model that can quantify user and system applications risks. No multifaceted data collector tool can also be used to monitor the collection of user data and the risk posed by each application. A benchmark of the risk level that alerts the user and distinguishes between acceptable and unacceptable risk levels in Android smartphone user does not exist. Hence, to address privacy risk, a formalized privacy model called PRiMo that uses a tree structure and calculus knowledge is proposed. An App-sensor Mobile Data Collector (AMoDaC) is developed and implemented in real life to analyse user data accessed by mobile applications through the permissions granted and the risks involved. A benchmark is proposed by comparing the proposed PRiMo outcome with the existing available testing metrics. The results show that Tools & Utility/Productivity applications posed the highest risk as compared to other categories of applications. Furthermore, 29 users faced low and acceptable risk, while two users faced medium risk. According to the benchmark proposed, users who faced risks below 25% are considered as safe. The effectiveness and accuracy of the proposed work is 96.8%.
Mobile devices, specifically smartphones, have become ubiquitous. For this reason, businesses are starting to develop "Bring Your Own Device" policies to allow their employees to use their owned devices in the workplace. BYOD offers many potential advantages: enhanced productivity, increased revenues, reduced mobile costs and IT efficiencies. However, due to emerging attacks and limitations on device resources, it is difficult to trust these devices with access to critical proprietary information. Therefore, in this paper, the potential attacks of BYOD and taxonomy of BYOD attacks are presented. Advanced persistent threat (APT) and malware attack are discussed in depth in this paper. Next, the proposed solution to mitigate the attacks of BYOD is discussed. Lastly, the evaluations of the proposed solutions based on the X.800 security architecture are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.