A new method for data-driven interpolatory model reduction is presented in this paper. Using the so-called data informativity perspective, we define a framework that enables the computation of moments at given (possibly complex) interpolation points based on time-domain input-output data only, without explicitly identifying the high-order system. Instead, by characterizing the set of all systems explaining the data, necessary and sufficient conditions are provided under which all systems in this set share the same moment at a given interpolation point. Moreover, these conditions allow for explicitly computing these moments. Reduced-order models are then derived by employing a variation of the classical rational interpolation method. The condition to enforce moment matching model reduction with prescribed poles is also discussed as a means to obtain stable reduced-order models. An example of an electrical circuit illustrates this framework.
This article proposes a data-driven model reduction approach on the basis of noisy data with a known noise model. Firstl, the concept of data reduction is introduced. In particular, we show that the set of reduced-order models obtained by applying a Petrov-Galerkin projection to all systems explaining the data characterized in a largedimensional quadratic matrix inequality (QMI) can again be characterized in a lower-dimensional QMI. Next, we develop a data-driven generalized balanced truncation method that relies on two steps. First, we provide necessary and sufficient conditions such that systems explaining the data have common generalized Gramians. Second, these common generalized Gramians are used to construct matrices that allow to characterize a class of reduced-order models via generalized balanced truncation in terms of a lowerdimensional QMI by applying the data reduction concept. Additionally, we present alternative procedures to compute a priori and a posteriori upper bounds with respect to the true system generating the data. Finally, the proposed techniques are illustrated by means of application to an example of a system of a cart with a double-pendulum.
This paper proposes a data-driven model reduction approach on the basis of noisy data. Firstly, the concept of data reduction is introduced. In particular, we show that the set of reduced-order models obtained by applying a Petrov-Galerkin projection to all systems explaining the data characterized in a large-dimensional quadratic matrix inequality (QMI) can again be characterized in a lower-dimensional QMI. Next, we develop a data-driven generalized balanced truncation method that relies on two steps. First, we provide necessary and sufficient conditions such that systems explaining the data have common generalized Gramians. Second, these common generalized Gramians are used to construct projection matrices that allow to characterize a class of reduced-order models via generalized balanced truncation in terms of a lower-dimensional QMI by applying the data reduction concept. Additionally, we present alternative procedures to compute a priori and a posteriori upper bounds with respect to the true system generating the data. Finally, the proposed techniques are illustrated by means of application to an example of a system of a cart with a double-pendulum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.