Problem statement: Forecasting is a function in management to assist decision making. It is also described as the process of estimation in unknown future situations. In a more general term it is commonly known as prediction which refers to estimation of time series or longitudinal type data. Gold is a precious yellow commodity once used as money. It was made illegal in USA 41 years ago, but is now once again accepted as a potential currency. The demand for this commodity is on the rise. Approach: Objective of this study was to develop a forecasting model for predicting gold prices based on economic factors such as inflation, currency price movements and others. Following the melt-down of US dollars, investors are putting their money into gold because gold plays an important role as a stabilizing influence for investment portfolios. Due to the increase in demand for gold in Malaysian and other parts of the world, it is necessary to develop a model that reflects the structure and pattern of gold market and forecast movement of gold price. The most appropriate approach to the understanding of gold prices is the Multiple Linear Regression (MLR) model. MLR is a study on the relationship between a single dependent variable and one or more independent variables, as this case with gold price as the single dependent variable. The fitted model of MLR will be used to predict the future gold prices. A naive model known as forecast-1 was considered to be a benchmark model in order to evaluate the performance of the model. Results: Many factors determine the price of gold and based on a hunch of experts, several economic factors had been identified to have influence on the gold prices. Variables such as Commodity Research Bureau future index (CRB); USD/Euro Foreign Exchange Rate (EUROUSD); Inflation rate (INF); Money Supply (M1); New York Stock Exchange (NYSE); Standard and Poor 500 (SPX); Treasury Bill (T-BILL) and US Dollar index (USDX) were considered to have influence on the prices. Parameter estimations for the MLR were carried out using Statistical Packages for Social Science package (SPSS) with Mean Square Error (MSE) as the fitness function to determine the forecast accuracy. Conclusion: Two models were considered. The first model considered all possible independent variables. The model appeared to be useful for predicting the price of gold with 85.2% of sample variations in monthly gold prices explained by the model. The second model considered the following four independent variables the (CRB lagged one), (EUROUSD lagged one), (INF lagged two) and (M1 lagged two) to be significant. In terms of prediction, the second model achieved high level of predictive accuracy. The amount of variance explained was about 70% and the regression coefficients also provide a means of assessing the relative importance of individual variables in the overall prediction of gold price
The wide use of petroleum-based oils raises concerns with regard to pollution, and the rising of awareness of greenhouse gases has created a demand for the use of environmentally friendly and biodegradable lubricants for industrial applications. Vegetable oils are one of the bio-oils that have been promoted as a replacement for petroleum products, in part due to their environmentally friendly characteristics; they are nontoxic, biodegradable, and easy to dispose of. Many researchers have performed studies on sunflower oil, corn oil, and soy oil, but few have studied palm oil as a lubricant. Palm oil produced in a high-throughput manner could fulfill the demand for biobased lubricants. In this study, the influence of temperature on friction and wear performance for refined, bleached, and deodorized (RBD) palm stearin and additive-free paraffinic mineral oil is presented. The experiments were conducted using a four-ball tribotester. Test temperatures of 55, 65, 75, and 85 • C were used. The sliding speeds were set to 1,200 rpm. Experiments were run for 1 h under a 392.4 N load. The results of RBD palm stearin were compared with those of paraffinic mineral oil. The experimental results showed that the RBD palm stearin had better performance compared to paraffinic mineral oil in terms of reducing frictional constraints.
This paper describes the use of dimensional analysis in investigating the effects of the electrical and the physical parameters on the material removal rate of a diesinking electro-discharge machine. A brief explanation of the material removal process is presented and the factors influencing the material removal rate are identified and used in the dimensional analysis to produce a mathematical model for the material removal rate. The validity of the analysis is verified since it predicts results which are in good agreement with experimental findings.
Problem statement: Forecasting of electricity load demand is an essential activity and an important function in power system planning and development. It is a prerequisite to power system expansion planning as the world of electricity is dominated by substantial lead times between decision making and its implementation. The importance of demand forecasting needs to be emphasized at all level as the consequences of under or over forecasting the demand are serious and will affect all stakeholders in the electricity supply industry. Approach: If under estimated, the result is serious since plant installation cannot easily be advanced, this will affect the economy, business, loss of time and image. If over estimated, the financial penalty for excess capacity (i.e., over-estimated and wasting of resources). Therefore this study aimed to develop new forecasting model for forecasting electricity load demand which will minimize the error of forecasting. In this study, we explored the development of rule-based method for forecasting electricity peak load demand. The rule-based system synergized human reasoning style of fuzzy systems through the use of set of rules consisting of IF-THEN approximators with the learning and connectionist structure. Prior to the implementation of rule-based models, SARIMA T model and Regression time series were used. Results: Modification of the basic regression model and modeled it using Box-Jenkins auto regressive error had produced a satisfactory and adequate model with 2.41% forecasting error. With rule-based based forecasting, one can apply forecaster expertise and domain knowledge that is appropriate to the conditions of time series. Conclusion: This study showed a significant improvement in forecast accuracy when compared with the traditional time series model. Good domain knowledge of the experts had contributed to the increase in forecast accuracy. In general, the improvement will depend on the conditions of the data, the knowledge development and validation. The rule-based forecasting procedure offered many promises and we hoped this study can become a starting point for further research in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.