Problem statement: Forecasting is a function in management to assist decision making. It is also described as the process of estimation in unknown future situations. In a more general term it is commonly known as prediction which refers to estimation of time series or longitudinal type data. Gold is a precious yellow commodity once used as money. It was made illegal in USA 41 years ago, but is now once again accepted as a potential currency. The demand for this commodity is on the rise. Approach: Objective of this study was to develop a forecasting model for predicting gold prices based on economic factors such as inflation, currency price movements and others. Following the melt-down of US dollars, investors are putting their money into gold because gold plays an important role as a stabilizing influence for investment portfolios. Due to the increase in demand for gold in Malaysian and other parts of the world, it is necessary to develop a model that reflects the structure and pattern of gold market and forecast movement of gold price. The most appropriate approach to the understanding of gold prices is the Multiple Linear Regression (MLR) model. MLR is a study on the relationship between a single dependent variable and one or more independent variables, as this case with gold price as the single dependent variable. The fitted model of MLR will be used to predict the future gold prices. A naive model known as forecast-1 was considered to be a benchmark model in order to evaluate the performance of the model. Results: Many factors determine the price of gold and based on a hunch of experts, several economic factors had been identified to have influence on the gold prices. Variables such as Commodity Research Bureau future index (CRB); USD/Euro Foreign Exchange Rate (EUROUSD); Inflation rate (INF); Money Supply (M1); New York Stock Exchange (NYSE); Standard and Poor 500 (SPX); Treasury Bill (T-BILL) and US Dollar index (USDX) were considered to have influence on the prices. Parameter estimations for the MLR were carried out using Statistical Packages for Social Science package (SPSS) with Mean Square Error (MSE) as the fitness function to determine the forecast accuracy. Conclusion: Two models were considered. The first model considered all possible independent variables. The model appeared to be useful for predicting the price of gold with 85.2% of sample variations in monthly gold prices explained by the model. The second model considered the following four independent variables the (CRB lagged one), (EUROUSD lagged one), (INF lagged two) and (M1 lagged two) to be significant. In terms of prediction, the second model achieved high level of predictive accuracy. The amount of variance explained was about 70% and the regression coefficients also provide a means of assessing the relative importance of individual variables in the overall prediction of gold price
Foreign exchange rate (forex) forecasting has been the subject of several rigorous investigations due to its importance in evaluating the benefits and risks of the international business environments. Many methods have been researched with the ultimate goal being to increase the reliability and efficiency of the forecasting method. However as the data are inherently dynamic and complex, the development of accurate forecasting method remains a challenging task if not a formidable one. This paper proposes a new weight of the fuzzy time series model for a daily forecast of the exchange rate market. Through this method, the weights are assigned to the fuzzy relationships based on a probability approach. This can be implemented to carry out the frequently recurring fuzzy logical relationship (FLR) in the fuzzy logical group (FLG). The US dollar to the Malaysian Ringgit (MYR) exchange rates are used as an example and the efficiency of the proposed method is compared with the methods proposed by Yu and Cheng et al. The result shows that the proposed method has enhanced the accuracy and efficiency of the daily exchange rate forecasting opportunities.
Background and aims: Since accurate forecasts help inform decisions for preventive health-care intervention and epidemic control, this goal can only be achieved by making use of appropriate techniques and methodologies. As much as forecast precision is important, methods and model selection procedures are critical to forecast precision. This study aimed at providing an overview of the selection of the right artificial neural network (ANN) methodology for the epidemic forecasts. It is necessary for forecasters to apply the right tools for the epidemic forecasts with high precision. Methods: It involved sampling and survey of epidemic forecasts based on ANN. A comparison of performance using ANN forecast and other methods was reviewed. Hybrids of a neural network with other classical methods or meta-heuristics that improved performance of epidemic forecasts were analysed. Results: Implementing hybrid ANN using data transformation techniques based on improved algorithms, combining forecast models, and using technological platforms enhance the learning and generalization of ANN in forecasting epidemics. Conclusion: The selection of forecasting tool is critical to the precision of epidemic forecast; hence, a working guide for the choice of appropriate tools will help reduce inconsistency and imprecision in forecasting epidemic size in populations. ANN hybrids that combined other algorithms and models, data transformation and technology should be used for an epidemic forecast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.