Flavonols are polyphenols found ubiquitously in plants and plant-products. Flavonols, particularly quercetin, are potent antioxidants in vitro and their intake has been associated inversely with the incidence of coronary heart disease. The aim of this study was to investigate the accumulation in plasma and excretion in urine of flavonol glucosides following ingestion of lightly fried onions. Five healthy volunteers followed a low-flavonoid diet for 3 days. On day 4, after an overnight fast, subjects were given 300 g of lightly fried yellow onions which contain conjugates of quercetin and isorhamnetin, including quercetin-3,4 '-diO-beta-glucoside, isorhamnetin-4'-O-beta-glucoside and quercetin-4'-O-beta-glucoside. Blood collection was carried out at 0 min, 0.5, 1.0, 1.5, 2, 3, 4, 5 and 24h after the supplement. In addition, subjects collected all their urine for 24h following the onion supplement. Isorhamnetin-4'-O-beta-glucoside and quercetin-4 '-O-beta-glucoside accumulated in plasma with maximum levels, defined as proportion of intake, of 10.7+/-2.6% and 0.13+/-0.03% respectively. The time of the quercetin-4'glucoside peak plasma concentration was 1.3+/-0.2 h after the ingestion of onions while a value of 1.8+/-0.7 h was obtained for isorhamnetin-4'-glucoside. Excretion in urine, as a proportion of intake, was 17.4+/-8.3% for isorhamnetin-4'-O-beta-glucoside and 0.2+/-0.1% for quercetin-4'-O-beta-glucoside. Possible reasons for the accumulation and excretion of isorhamnetin-4'-glucoside in proportionally much higher amounts than quercetin-4'-glucoside are discussed. It is concluded that flavonols are absorbed into the bloodstream as glucosides and minor structural differences affect markedly both the level of accumulation and the extent to which the conjugates are excreted.
BackgroundDiabetes is a serious metabolic disorder affecting the metabolism of carbohydrate, protein and fat. A number of studies have shown that diabetes mellitus is associated with oxidative stress, leading to an increased production of reactive oxygen species. Ficus deltoidea is traditionally used in Malaysia for regulating blood sugar, blood pressure and cholesterol levels. The use of F. deltoidea as an alternative medicinal herb is increasingly gaining popularity with the sale of F. deltoidea tea bags and capsules in the local market. The present study was undertaken to investigate the antidiabetic and antioxidant activities of the fruits from different varieties of F. deltoidea, employing in vitro methods.MethodTwo fruit varieties of F. deltoidea (var. angustifolia (SF) and var. kunstleri (BF)) were extracted separately using double-distilled water. The resulting aqueous extracts were partitioned using ethyl acetate to obtain the ethyl acetate and water fractions. The crude aqueous extracts and the corresponding fractions were evaluated for their phenolic, flavonoid, sugar and protein contents. Protein profiling of the extracts and fractions were also carried out by means of SDS-PAGE and SELDI-TOF MS. Antidiabetic activities were assessed based on the ability of the samples to inhibit yeast and mammalian α-glucosidase as well as α-amylase. Antioxidant capacities were examined by measuring the ability of the samples to reduce ferric ions and to scavenge DPPH, superoxide anion, ABTS and nitric oxide radicals.ResultsThe crude extracts and fractions of SF and BF inhibited both yeast and rat intestinal α-glucosidases in a dose-dependent manner, but did not inhibit porcine pancreatic α-amylase. The water fraction of BF showed the highest percentage of α-glucosidase inhibition while having the highest amount of protein (73.33 ± 4.99 μg/mg fraction). All the extracts and fractions exhibited antioxidant activities, with SF crude extract showing the highest antioxidant activity and phenolic content (121.62 ± 4.86 mg/g extract). Fractionation of the crude extracts resulted in loss of antioxidant activities. There was no positive correlation between phenolic and flavonoid content with α-glucosidase inhibitory activities. However, phenolic content correlated well with antioxidant activities of the crude extracts but not with the fractions.ConclusionsThe antioxidant activities of the fruits of F. deltoidea might be asserted by the phenolic content but other polar plant components were possibly involved in the antidiabetic properties. The study of these compounds having both antihyperglycemic and antioxidant activities may provide a new approach in the treatment of diabetes mellitus.
Three organic wastes (banana skin (BS), brewery spent grain (BSG), and spent mushroom compost (SMC)) were used for bioremediation of soil spiked with used engine oil to determine the potential of these organic wastes in enhancing biodegradation of used oil in soil. The rates of biodegradation of the oil were studied for a period of 84 days under laboratory conditions. Hydrocarbon-utilizing bacterial counts were high in all the organic waste-amended soil ranging between 10.2×10 6 and 80.5×10 6 CFU/g compared to unamended control soil throughout the 84 days of study. Oil-contaminated soil amended with BSG showed the highest reduction in total petroleum hydrocarbon with net loss of 26.76% in 84 days compared to other treatments. First-order kinetic model revealed that BSG was the best of the three organic wastes used with biodegradation rate constant of 0.3163 day −1 and half-life of 2.19 days. The results obtained demonstrated the potential of organic wastes for oil bioremediation in the order BSG>BS>SMC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.