Our case report describes the rapid detection of the SARS-CoV-2 omicron variant using a combination of targeted spike SNP PCR and viral genome sequencing. This case occurred in a fully vaccinated and boosted returning traveler with mild symptoms who was identified through community surveillance rather than presentation for clinical care.
Background RSV is a leading viral respiratory pathogen in infants. The objective of this study was to generate RSV live-attenuated vaccine (LAV) candidates by removing the G-protein mucin domains to attenuate viral replication while retaining immunogenicity through de-shielding of surface epitopes. Methods Two LAV candidates were generated from recombinant RSV A2-line19F by deletion of the G-protein mucin domains (A2-line19F-G155) or deletion of the G-protein mucin and transmembrane domains (A2-line19F-G155S). Vaccine attenuation was measured in BALB/c mouse lungs by fluorescent focus unit (FFU) assays and RT-PCR. Immunogenicity was determined by measuring serum binding and neutralizing antibodies in mice following prime/boost on days 28 and 59. Efficacy was determined by measuring RSV lung viral loads on day 4 post-challenge. Results Both LAVs were undetectable in mouse lungs by FFU assay and elicited similar neutralizing antibody titers compared to A2-line19F on days 28 and 59. Following RSV challenge, vaccinated mice showed no detectable RSV in the lungs by FFU assay and a significant reduction in RSV RNA in the lungs by RT-PCR of 560-fold for A2-line19F-G155 and 604-fold for A2-line19F-G155S compared to RSV-challenged, unvaccinated mice. Conclusions Removal of the G-protein mucin domains produced RSV LAV candidates that were highly attenuated with retained immunogenicity.
SARS-CoV-2 subgenomic RNA (sgRNA) may indicate actively replicating virus, but sgRNA abundance has not been systematically compared between SARS-CoV-2 variants. sgRNA was quantified in 169 clinical samples by rRT-PCR, demonstrating similar relative abundance among known variants. Thus, sgRNA detection can identify individuals with active viral replication regardless of variant.
Since the beginning of the SARS-CoV-2 pandemic, supply chain shortages have caused major disruptions in sourcing the materials needed for laboratory-based molecular assays. With increasing demand for molecular testing, these disruptions have limited testing capacity and hindered efforts to mitigate spread of the virus and new variants. Here we evaluate an economical and reliable protocol for the extraction and short-term ambient temperature storage of SARS-CoV-2 RNA. Additional objectives of the study were to evaluate RNA from this protocol for 1) detection of single nucleotide polymorphisms (SNPs) in the spike gene and 2) whole genome sequencing of SARS-CoV-2. The RNAES protocol was evaluated with residual nasopharyngeal (NP) samples collected from Emory Healthcare and Emory Student Health services. All RNAES extractions were performed in duplicate and once with a commercial extraction robot for comparison. Following extraction, eluates were immediately tested by rRT-PCR. SARS-CoV-2 RNA was successfully detected in 56/60 (93.3%) RNAES replicates, and Ct values corresponded with comparator results. Upon testing in spike SNP assays, three genotypes were identified, and all variant calls were consistent with those previously obtained after commercial extraction. Additionally, the SARS-RNAES protocol yield eluate pure enough for downstream whole genome sequencing, and results were consistent with SARS-CoV-2 whole genome sequencing of eluates matched for Ct value. With reproducible results across a range of virus concentrations, the SARS-RNAES protocol could help increase SARS-CoV-2 diagnostic testing and monitoring for emerging variants in resource-constrained communities.
Subunit-selective inhibition of N-methyl-D-aspartate receptors (NMDARs) is a promising therapeutic strategy for several neurological disorders, including epilepsy, Alzheimer's and Parkinson's disease, depression, and acute brain injury. We previously described the dihydroquinoline−pyrazoline (DQP) analogue 2a (DQP-26) as a potent NMDAR negative allosteric modulator with selectivity for GluN2C/D over GluN2A/B. However, moderate (<100-fold) subunit selectivity, inadequate cellmembrane permeability, and poor brain penetration complicated the use of 2a as an in vivo probe. In an effort to improve selectivity and the pharmacokinetic profile of the series, we performed additional structure−activity relationship studies of the succinate side chain and investigated the use of prodrugs to mask the pendant carboxylic acid. These efforts led to discovery of the analogue (S)-(−)-2i, also referred to as (S)-(−)-DQP-997-74, which exhibits >100-and >300-fold selectivity for GluN2C-and GluN2Dcontaining NMDARs (IC 50 0.069 and 0.035 μM, respectively) compared to GluN2A-and GluN2B-containing receptors (IC 50 5.2 and 16 μM, respectively) and has no effects on AMPA, kainate, or GluN1/GluN3 receptors. Compound (S)-(−)-2i is 5-fold more potent than (S)-2a. In addition, compound 2i shows a time-dependent enhancement of inhibitory actions at GluN2C-and GluN2Dcontaining NMDARs in the presence of the agonist glutamate, which could attenuate hypersynchronous activity driven by highfrequency excitatory synaptic transmission. Consistent with this finding, compound 2i significantly reduced the number of epileptic events in a murine model of tuberous sclerosis complex (TSC)-induced epilepsy that is associated with upregulation of the GluN2C subunit. Thus, 2i represents a robust tool for the GluN2C/D target validation. Esterification of the succinate carboxylate improved brain penetration, suggesting a strategy for therapeutic development of this series for NMDAR-associated neurological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.