Three-dimensional observation of metal grains (MG) has a wide potential application serving the interdisciplinary community. It can be used for industrial applications and basic research to overcome the limitations of non-destructive testing methods, such as ultrasonic testing, magnetic particle testing, and eddy current testing. This study proposes a method and its implementation algorithm to observe (MG) metal grains in three dimensions in a general laboratory environment equipped with a polishing machine and a metal microscope. An image was taken by a metal microscope while polishing the mounted object to be measured. Then, the metal grains (MGs) were reconstructed into three dimensions through local positioning, binarization, boundary extraction, (MG) selection, and stacking. The goal is to reconstruct the 3D MG in a virtual form that reflects the real shape of the MG. The usefulness of the proposed method was verified using the carbon steel (SA106) specimen.
This paper deals with investigation and characterization of weld circumferential thin cracks in austenitic stainless steel (AISI 304) pipe with eddy current nondestructive testing technique (EC-NDT). During welding process, the heat source applied to the AISI 304 was not uniform, accompanied by a change of the physical property. To take into consideration this change, the relative magnetic permeability was considered as a gradiently changed variable in the weld and the heat affected zone (HAZ), which was generated by the Monte Carlo Method based on pseudo random number generation (PRNG). Numerical simulations were performed by means of MATLAB software using 2D finite element method to solve the problem. To verify, results from the modeling works were conducted and contrasted with findings from experimental ones. Indeed, the results of comparison agreed well. In addition, they show that considering this changing of this magnetic property allows distinguishing the thin cracks in the weld area.
Carbon steels are commonly used in railroad, shipment, building, and bridge construction. They provide excellent ductility and toughness when exposed to external stresses. They are able to resist stresses and strains effectively, and guarantee safe operation of the devices through nondestructive testing (NDT). The magnetic metal memory (MMM) can be used as an NDT method to measure the residual stress. The ability of carbon steel to produce a magnetic memory effect under stress is explored here, and enables the magnetic flux density to be analyzed. The relationship between stress and magnetic flux density has not been fully presented until now. The purpose of this paper is to assess the relationship between stress distribution and the magnetic flux density measured by the experiment. For this, an experimental method for examining a carbon steel plate (SA 106), based on the four-point loading test, was used. The effect of stresses resulting from the applied loads on the response of the experimented SA 106 specimen was examined. A three directional tunnel magnetoresistance (TMR) measurement system was used to collect the triaxial magnetic flux density distribution in the SA 106 specimen. In addition, finite element method (FEM) analyses were performed, and provided information on the direction and distribution of the stress over the studied SA 106 specimen. Indeed, a correlation was derived by comparing the stress analysis by FEM and the measured triaxial magnetic flux density.
Carbon steel pipe is used in various industries, including nuclear power plants. Due to the daily cyclic operation of the pipe over time, environmental influences, and extreme working conditions, the probability of developing small fine cracks in the welded areas of the pipes increases. For that reason, it requires earlier assessment, and providing adequate inspection and evaluation of the weld area of the pipes used in such an installation is crucial to increase the safety level. In this paper, two different probe configurations were used to assess the integrity of the girth weld of the SA106 carbon steel pipe welded by gas tungsten arc welding. The conventional eddy current probe was initially used, but as it had some limitations, a new probe configuration was proposed to overcome these constraints. Numerical simulations using the finite element method were performed, based on the real measurement of the physical properties of the specimen, to complement the experimental data. In addition, the experimental results were successfully reproduced by the simulations. Simulation and experimental results show that the proposed probe configuration allows adequate inspection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.