Poplar and willow are economically-important, fast-growing tree species with the ability to colonize nutrient-poor environments. To initiate a study on the possible contribution of endophytes to this ability, we isolated bacteria from within surface-sterilized stems of native poplar (Populus trichocarpa) and willow (Salix sitchensis) in a riparian system in western Washington state. Severalof the isolatesgrew well in nitrogen-limited medium. The presenceof nifH, a gene encodingone of the subunits of nitrogenase, was confirmed in several of the isolates including species of Burkholderia, Rahnella, Sphingomonas, and Acinetobacter. Nitrogenase activity (as measuredby the acetylene reduction assay) was also confirmed in someof the isolates. The presenceof these diazotrophic microorganisms may help explain the ability of these pioneering tree species to grow under nitrogen limitation.
Small, volatile hydrocarbons, including trichloroethylene, vinyl chloride, carbon tetrachloride, benzene, and chloroform, are common environmental pollutants that pose serious health effects. We have developed transgenic poplar (Populus tremula ؋ Populus alba) plants with greatly increased rates of metabolism and removal of these pollutants through the overexpression of cytochrome P450 2E1, a key enzyme in the metabolism of a variety of halogenated compounds. The transgenic poplar plants exhibited increased removal rates of these pollutants from hydroponic solution. When the plants were exposed to gaseous trichloroethylene, chloroform, and benzene, they also demonstrated superior removal of the pollutants from the air. In view of their large size and extensive root systems, these transgenic poplars may provide the means to effectively remediate sites contaminated with a variety of pollutants at much faster rates and at lower costs than can be achieved with current conventional techniques.CYP2E1 ͉ P450 ͉ poplar ͉ trichloroethylene ͉ carbon tetrachloride
An endophytic yeast, Rhodotorula mucilaginosa strain PTD3, that was isolated from stems of hybrid poplar was found to be capable of production of xylitol from xylose, of ethanol from glucose, galactose, and mannose, and of arabitol from arabinose. The utilization of 30 g/L of each of the five sugars during fermentation by PTD3 was studied in liquid batch cultures. Glucose-acclimated PTD3 produced enhanced yields of xylitol (67% of theoretical yield) from xylose and of ethanol (84, 86, and 94% of theoretical yield, respectively) from glucose, galactose, and mannose. Additionally, this yeast was capable of metabolizing high concentrations of mixed sugars (150 g/L), with high yields of xylitol (61% of theoretical yield) and ethanol (83% of theoretical yield). A 1:1 glucose:xylose ratio with 30 g/L of each during double sugar fermentation did not affect PTD3's ability to produce high yields of xylitol (65% of theoretical yield) and ethanol (92% of theoretical yield). Surprisingly, the highest yields of xylitol (76% of theoretical yield) and ethanol (100% of theoretical yield) were observed during fermentation of sugars present in the lignocellulosic hydrolysate obtained after steam pretreatment of a mixture of hybrid poplar and Douglas fir. PTD3 demonstrated an exceptional ability to ferment the hydrolysate, overcome hexose repression of xylose utilization with a short lag period of 10 h, and tolerate sugar degradation products. In direct comparison, PTD3 had higher xylitol yields from the mixed sugar hydrolysate compared with the widely studied and used xylitol producer Candida guilliermondii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.