Ecological networks can provide insight into how biodiversity loss and changes in species interactions impact the delivery of ecosystem services. In agroecosystems that vary in management practices, quantifying changes in ecological network structure across gradients of local and landscape composition can inform both the ecology and function of productive agroecosystems. In this study, we examined natural-enemy-herbivore co-occurrence networks associated with Brassica oleracea (cole crops), a common crop in urban agricultural systems. Specifically, we investigated how local management characteristics of urban community gardens and the landscape composition around them affect (1) the abundance of B. oleracea herbivores and their natural enemies, (2) the natural-enemy : herbivore ratio, and (3) natural-enemyherbivore co-occurrence network metrics. We sampled herbivores and natural enemies in B. oleracea plants in 24 vegetable gardens in the California, USA central coast region. We also collected information on garden characteristics and land-use cover of the surrounding landscape (2 km radius). We found that increased floral richness and B. oleracea abundance were associated with increased parasitoid abundance, non-aphid herbivore abundance, and increased network vulnerability; increased vegetation complexity suppressed parasitoid abundance, but still boosted network vulnerability. High agricultural land-use cover in the landscape surrounding urban gardens was associated with lower predator, parasitoid, and nonaphid herbivore abundance, lower natural-enemy : herbivore ratios, lower interaction richness, and higher trophic complementarity. While we did not directly measure pest control, higher interaction richness, higher vulnerability, and lower trophic complementarity are associated with higher pest control services in other agroecosystems. Thus, if gardens function similarly to other agroecosystems, our results indicate that increasing vegetation complexity, including trees, shrubs, and plant richness, especially within gardens located in intensively farmed landscapes, could potentially enhance the biodiversity and abundance of natural enemies, supporting ecological networks associated with higher pest control services.
Citation: Egerer, M., H. Liere, A. Lucatero, and S. M. Philpott. 2020. Plant damage in urban agroecosystems varies with local and landscape factors. Ecosphere 11(3):Abstract. Biotic and abiotic factors at local to landscape scales influence insect pest and disease dynamics in agricultural systems. However, relative to studies focused on the importance of these drivers of crop plant damage in rural agricultural systems, few studies investigate plant damage from herbivore insects and plant diseases in urban agroecosystems, and consequently, most urban farmers lack knowledge on crop protection tactics. Here we use three common crop species within urban agroecosystems (community gardens) distributed across an urban landscape as a model system to ask how local, landscape, and microclimate factors relate to herbivore and disease plant damage. We hypothesized that plant damage would be lower in gardens with greater local vegetation complexity, landscape-scale complexity, and less variable temperatures, but that the importance of factors is species-and damage-specific. By measuring Brassica, cucurbit, and tomato insect pest and disease damage across the growing season, we confirmed that the importance of factors varies with crop species and by damage type. Both local complexity factors (e.g., number of trees and shrubs) and landscape complexity (percent natural cover in the landscape) relate to lower incidence of herbivore and disease damage on some crops, supporting our prediction that habitat heterogeneity at both local and landscape scales lowers plant damage. Greater temperature variability related to higher disease damage on tomatoes linking microclimate factors to disease prevalence. Yet, local complexity factors also related to higher incidence of plant damage for other crop species, indicating variable species-level impacts of local management factors on plant damage. By measuring the abundance of fungus-feeding lady beetles (Psyllobora) on cucurbits, we confirmed a strong association between natural enemies and powdery mildew. We provide a case study on how changes in local to landscape-scale factors relate to plant damage in urban agroecosystems and suggest how urban farmers and gardeners can apply this ecological knowledge to improve sustainable urban food production.
Ecosystem services (ESs) are essential for human well-being, especially in urban areas where 60% of the global population will live by 2030. While urban habitats have the potential to support biodiversity and ES, few studies have quantified the impact of local and landscape management across a diverse suite of services. We leverage 5 years of data (>5000 observations) across a network of urban community gardens to determine the drivers of biodiversity and ES trade-offs and synergies. We found multiple synergies and few trade-offs, contrasting previous assumptions that food production is at odds with biodiversity. Furthermore, we show that natural landscape cover interacts with local management to mediate services provided by mobile animals, specifically pest control and pollination. By quantifying the factors that support a diverse suite of ES, we highlight the critical role of garden management and urban planning for optimizing biodiversity and human benefit.
Cities are sometimes characterized as homogenous with species assemblages composed of abundant, generalist species having similar ecological functions. Under this assumption, rare species, or species observed infrequently, would have especially high conservation value in cities for their potential to increase functional diversity. Management to increase the number of rare species in cities could be an important conservation strategy in a rapidly urbanizing world. However, most studies of species rarity define rarity in relatively pristine environments where human management and disturbance is minimized. We know little about what species are rare, how many species are rare, and what management practices promote rare species in urban environments. Here, we identified which plants and species of birds and bees that control pests and pollinate crops are rare in urban gardens and assessed how social, biophysical factors, and cross‐taxonomic comparisons influence rare species richness. We found overwhelming numbers of rare species, with more than 50% of plants observed classified as rare. Our results highlight the importance of women, older individuals, and gardeners who live closer to garden sites in increasing the number of rare plants within urban areas. Fewer rare plants were found in older gardens and gardens with more bare soil. There were more rare bird species in larger gardens and more rare bee species for which canopy cover was higher. We also found that in some cases, rarity begets rarity, with positive correlations found between the number of rare plants and bee species and between bee and bird species. Overall, our results suggest that urban gardens include a high number of species existing at low frequency and that social and biophysical factors promoting rare, planned biodiversity can cascade down to promote rare, associated biodiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.