This study presents an adaptive perturb and observe (P&O)-fuzzy control maximum power point tracking (MPPT) for photovoltaic (PV) boost dc-dc converter. P&O is known as a very simple MPPT algorithm and used widely. Fuzzy logic is also simple to be developed and provides fast response. The proposed technique combines both of their advantages. It should improve MPPT performance especially with existing of noise. For evaluation and comparison analysis, conventional P&O and fuzzy logic control algorithms have been developed too. All the algorithms were simulated in MATLAB-Simulink, respectively, together with PV module of Kyocera KD210GH-2PU connected to PV boost dc-dc converter. For hardware implementation, the proposed adaptive P&O-fuzzy control MPPT was programmed in TMS320F28335 digital signal processing board. The other two conventional MPPT methods were also programmed for comparison purpose. Performance assessment covers overshoot, time response, maximum power ratio, oscillation and stability as described further in this study. From the results and analysis, the adaptive P&O-fuzzy control MPPT shows the best performance with fast time response, less overshoot and more stable operation. It has high maximum power ratio as compared to the other two conventional MPPT algorithms especially with existing of noise in the system at low irradiance.
Wireless body area network (WBAN) applications have broad utility in monitoring patient health and transmitting the data wirelessly. WBAN can greatly benefit from wearable antennas. Wearable antennas provide comfort and continuity of the monitoring of the patient. Therefore, they must be comfortable, flexible, and operate without excessive degradation near the body. Most wearable antennas use a truncated ground, which increases specific absorption rate (SAR) undesirably. A full ground ultra-wideband (UWB) antenna is proposed and utilized here to attain a broad bandwidth while keeping SAR in the acceptable range based on both 1 g and 10 g standards. It is designed on a denim substrate with a dielectric constant of 1.4 and thickness of 0.7 mm alongside the ShieldIt conductive textile. The antenna is fed using a ground coplanar waveguide (GCPW) through a substrate-integrated waveguide (SIW) transition. This transition creates a perfect match while reducing SAR. In addition, the proposed antenna has a bandwidth (BW) of 7–28 GHz, maximum directive gain of 10.5 dBi and maximum radiation efficiency of 96%, with small dimensions of 60 × 50 × 0.7 mm3. The good antenna’s performance while it is placed on the breast shows that it is a good candidate for both breast cancer imaging and WBAN.
This study presents an improved self-charging algorithm by introducing a new feature known as step size error cancellation for better performance of DC-link capacitor voltage control in single-phase shunt active power filter (SAPF). Previous works of self-charging algorithms were focused only for steady-state operation by using either proportionalintegral (PI) or fuzzy logic control (FLC). However, in a certain operation of any power system, dynamic operation may also happen. Thus, by introducing step size error cancellation as an additional feature to the self-charging algorithm, both steady state and dynamic operations can be covered. For evaluation and comparison analysis, self-charging with PI and FLC algorithms have been developed too. All the algorithms were simulated in MATLAB-Simulink, respectively, together with the single-phase SAPF. For hardware implementation, the proposed algorithm was programmed in TMS320F28335 digital signal processing board. The other two conventional self-charging algorithms were also programmed for comparison purposes. From the results and analysis, the proposed self-charging with step size error cancellation shows the best performance with high accuracy, fast response time and less overshoot and undershoot. It performs well in both steady state and dynamic operations as compared with both previous self-charging techniques which only work well in steady-state operation.
Ultra-wideband (UWB) technology can offer broad capacity, short-range communications at a relatively low level of energy usage, which is very desirable for wireless body area networks (WBANs). The involvement of the human body in such a device poses immense difficulties for both the architecture of the wearable antenna and the broadcast model. Initially, the bonding between the wearable antenna and the human body should also be acknowledged in the early stages of the design, so that both the potentially degrading output of the antenna as a consequence of the body and the possibility of exposure for the body may be handled. Next, the transmission path in WBAN is affected by the constant activity of the human body, leading to the time-varying dispersion of electromagnetic waves. Few researchers were interested in this field, and some substantial progress has recently been considered. On the other hand, this paper covered both wearable and Non-wearable UWB antenna designs and applications with respect to their substrate characteristics. Finally, this review prospectively exposes the upgraded developments of (ON-OFF) body antennas in the area of wearable and Non-wearable UWB and their implementations in the WBAN device and aims to evaluate the latest design features that inspire the performance of the antennas.INDEX TERMS ON-body antenna, OFF-body antenna, wearable antenna, ultra-wideband (UWB) antenna, wireless body area network (WBAN).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.