The objective of this study was to assess the effect of comprehensive exercise program widely accepted as a community-based physical intervention for the prevention of falling in the elderly persons on their controlling standing balance. Twenty-six community-dwelling elderly persons (13 males and females; 69.8 ± 2.8 years old) participated in this study. Daily exercise was comprised of walking for more than 30 min, stretching, muscle strengthening and balance exercise without exercise equipments. The intervention was continued for three months. Indicators of standing balance related to static balance, dynamic balance and postural response were measured before and after the intervention. As an effect of the intervention on static balance, the sway of center of pressure (COP) in the static stance significantly increased. In the dynamic balance, significant improvements were observed in one leg standing time, the 10-m gait time, functional reach. Additionally, the maximal movable length of COP which subjects can move voluntarily to right and left significantly increased. In the postural response, the integrated electromyography (IEMG) induced by postural response for sudden postural perturbation significantly decreased in the lower leg muscles. Since less muscular activities were sufficient to maintain posture, it was suggested that postural response was elicited more efficiently following the intervention. This study suggested that the comprehensive exercise program, which has been widely introduced as community-based interventions for the prevention of falling, have extensive effects on the control of standing balance covering static balance, dynamic balance and postural response in the elderly persons.
Reflecting the rapidly aging population, community-based interventions in the form of physical exercise have been introduced to promote the health of elderly persons. Many investigation studies have focused on muscle strength in the lower leg as a potent indicator of the effect of physical exercises. The objective of this study was to assess the effect of long-term daily exercises on neural command in lower leg muscle activations. Twenty-six community-based elderly persons (13 men and 13 women; 69.8 ± 0.5 years old) participated in this study. Daily exercise was comprised of walking for more than 30 min, stretching, muscle strengthening and balance exercise, and was continued for three months. Muscle strength and surface electromyography of the tibia anterior, rectus femoris, and biceps femoris were measured in maximum isometric voluntary contraction both before and after the intervention. The mean frequency of the firing of motor units was calculated based on fast Fourier transformation of the electromyography. As the results of the intervention, muscle strength increased significantly only in biceps femoris, whereas the mean frequency of motor units decreased significantly in every muscle, indicating that motor unit firing in lower frequency efficiently induces the same or greater strength compared with before the intervention. Thus, synchronization of motor units compensates for the lower frequency of motor unit firing to maintain muscular strength. In conclusion, long-term physical exercises in the elderly can modulate the neural adjustment of lower leg muscles to promote efficient output of muscle strength. electromyography; elderly person; physical exercise
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.