Site‐specific investigations of the role of radiomics in cancer diagnosis and therapy are emerging. We evaluated the reproducibility of radiomic features extracted from 18Flourine–fluorodeoxyglucose (18F‐FDG) PET images for three parameters: manual versus computer‐aided segmentation methods, gray‐level discretization, and PET image reconstruction algorithms. Our cohort consisted of pretreatment PET/CT scans from 88 cervical cancer patients. Two board‐certified radiation oncologists manually segmented the metabolic tumor volume (MTV1 and MTV2) for each patient. For comparison, we used a graphical‐based method to generate semiautomated segmented volumes (GBSV). To address any perturbations in radiomic feature values, we down‐sampled the tumor volumes into three gray‐levels: 32, 64, and 128 from the original gray‐level of 256. Finally, we analyzed the effect on radiomic features on PET images of eight patients due to four PET 3D‐reconstruction algorithms: maximum likelihood‐ordered subset expectation maximization (OSEM) iterative reconstruction (IR) method, fourier rebinning‐ML‐OSEM (FOREIR), FORE‐filtered back projection (FOREFBP), and 3D‐Reprojection (3DRP) analytical method. We extracted 79 features from all segmentation method, gray‐levels of down‐sampled volumes, and PET reconstruction algorithms. The features were extracted using gray‐level co‐occurrence matrices (GLCM), gray‐level size zone matrices (GLSZM), gray‐level run‐length matrices (GLRLM), neighborhood gray‐tone difference matrices (NGTDM), shape‐based features (SF), and intensity histogram features (IHF). We computed the Dice coefficient between each MTV and GBSV to measure segmentation accuracy. Coefficient values close to one indicate high agreement, and values close to zero indicate low agreement. We evaluated the effect on radiomic features by calculating the mean percentage differences (d¯) between feature values measured from each pair of parameter elements (i.e. segmentation methods: MTV1‐MTV2, MTV1‐GBSV, MTV2‐GBSV; gray‐levels: 64‐32, 64‐128, and 64‐256; reconstruction algorithms: OSEM‐FORE‐OSEM, OSEM‐FOREFBP, and OSEM‐3DRP). We used false|normald¯false| as a measure of radiomic feature reproducibility level, where any feature scored false|normald¯false| ±SD ≤ |25|% ± 35% was considered reproducible. We used Bland–Altman analysis to evaluate the mean, standard deviation (SD), and upper/lower reproducibility limits (U/LRL) for radiomic features in response to variation in each testing parameter. Furthermore, we proposed U/LRL as a method to classify the level of reproducibility: High— ±1% ≤ U/LRL ≤ ±30%; Intermediate— ±30% < U/LRL ≤ ±45%; Low— ±45 < U/LRL ≤ ±50%. We considered any feature below the low level as nonreproducible (NR). Finally, we calculated the interclass correlation coefficient (ICC) to evaluate the reliability of radiomic feature measurements for each parameter. The segmented volumes of 65 patients (81.3%) scored Dice coefficient >0.75 for all three volumes. The result outcomes revealed a tendency of higher radiomic fe...
Quantitative image features, also known as radiomic features, have shown potential for predicting treatment outcomes in several body sites. We quantitatively analyzed Fluorine-fluorodeoxyglucose (F-FDG) Positron Emission Tomography (PET) uptake heterogeneity in the Metabolic Tumor Volume (MTV) of eighty cervical cancer patients to investigate the predictive performance of radiomic features for two treatment outcomes: the development of distant metastases (DM) and loco-regional recurrent disease (LRR). We aimed to fit the highest predictive features in multiple logistic regression models (MLRs). To generate such models, we applied backward feature selection method as part of Leave-One-Out Cross Validation (LOOCV) within a training set consisting of 70% of the original patient cohort. The trained MLRs were tested on an independent set consisted of 30% of the original cohort. We evaluated the performance of the final models using the Area under the Receiver Operator Characteristic Curve (AUC). Accordingly, six models demonstrated superior predictive performance for both outcomes (four for DM and two for LRR) when compared to both univariate-radiomic feature models and Standard Uptake Value (SUV) measurements. This demonstrated approach suggests that the ability of the pre-radiochemotherapy PET radiomics to stratify patient risk for DM and LRR could potentially guide management decisions such as adjuvant systemic therapy or radiation dose escalation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.