Ignition requires precisely controlled, high convergence implosions to assemble a dense shell of deuterium-tritium (DT) fuel with ρR>∼1 g/cm2 surrounding a 10 keV hot spot with ρR ∼ 0.3 g/cm2. A working definition of ignition has been a yield of ∼1 MJ. At this yield the α-particle energy deposited in the fuel would have been ∼200 kJ, which is already ∼10 × more than the kinetic energy of a typical implosion. The National Ignition Campaign includes low yield implosions with dudded fuel layers to study and optimize the hydrodynamic assembly of the fuel in a diagnostics rich environment. The fuel is a mixture of tritium-hydrogen-deuterium (THD) with a density equivalent to DT. The fraction of D can be adjusted to control the neutron yield. Yields of ∼1014−15 14 MeV (primary) neutrons are adequate to diagnose the hot spot as well as the dense fuel properties via down scattering of the primary neutrons. X-ray imaging diagnostics can function in this low yield environment providing additional information about the assembled fuel either by imaging the photons emitted by the hot central plasma, or by active probing of the dense shell by a separate high energy short pulse flash. The planned use of these targets and diagnostics to assess and optimize the assembly of the fuel and how this relates to the predicted performance of DT targets is described. It is found that a good predictor of DT target performance is the THD measurable parameter, Experimental Ignition Threshold Factor, ITFX ∼ Y × dsf 2.3, where Y is the measured neutron yield between 13 and 15 MeV, and dsf is the down scattered neutron fraction defined as the ratio of neutrons between 10 and 12 MeV and those between 13 and 15 MeV.
The National Ignition Facility (NIF) i,ii at Lawrence Livermore National Laboratory is a 192 beam, 1.8 MJ 0.35 µm laser designed to drive inertial confinement fusion (ICF) capsules to ignition iii. NIF was formally dedicated in May 2009. The National Ignition Campaign, a collaborative research undertaking by LLNL, LLE, LANL, GA, and SNL, has a goal of achieving a robust burning plasma by the end of 2012. In the indirect-drive approach iv , the laser energy is converted to thermal x-rays inside a high Z cavity (hohlraum). The x rays then ablate the outer layers of a DT-filled capsule placed at the center of the hohlraum, causing the capsule to implode, compress and heat the DT and ignite.
The National Ignition Facility (NIF) i,ii at Lawrence Livermore National Laboratory is a 192 beam, 1.8 MJ 0.35 µm laser designed to drive inertial confinement fusion (ICF) capsules to ignition iii. NIF was formally dedicated in May 2009. The National Ignition Campaign, a collaborative research undertaking by LLNL, LLE, LANL, GA, and SNL, has a goal of achieving a robust burning plasma by the end of 2012. In the indirect-drive approach iv , the laser energy is converted to thermal x-rays inside a high Z cavity (hohlraum). The x rays then ablate the outer layers of a DT-filled capsule placed at the center of the hohlraum, causing the capsule to implode, compress and heat the DT and ignite.
The acceleration of plasma flow from a static source through confining and guiding expansion magnetic fields has been studied experimentally and numerically. Plasma with 10 16 cm~3 and 20 eV produced in a 50-cm-long coil with 3.81-cm-radius discharge tube was confined within 23 kG magnetic fields. The transient flow from the ends was studied with spectroscopy, Thomson scattering, pressure probes, and magnetic probes. The flow was axisymmetric, with a throat being formed near the end of the coil, and flow became supersonic in the expanding "magnetic nozzle" geometry. Axial variations of electron density, temperature, and plasma radius were measured. From reduced data, velocity was seen to increase in the flow direction, choking at sonic and magnetic cusp speeds following several microseconds of transients. A two-dimensional MHD numerical model which included all flow and dissipative effects was developed. With a radial parabolic profile of electron density, variation of properties in the axial direction was predicted. Generally, the flow was influenced by electromagnetic interaction and did not behave isentropically. In comparison of the computational predictions with experimentidentified nonclassical transport, electrical resistivity (and conductivity) did follow classical behavior but electron thermal transport was enhanced by a factor as much as 11 times that of classical behavior. A =
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.