Conclusion:The KI score can be used as a pre-test to predict the performance of a MI based BCI.The physical presence of the object of an action facilitates motor imagination in poor imagers.
Significance:In BCI based on MI, in particular for assisted rehabilitation of the upper extremities.3
Background: Loss of hand function following high level spinal cord injury (SCI) is perceived as a high priority area for rehabilitation. Following discharge, it is often impractical for the specialist care centre to provide ongoing therapy for people living with chronic SCI at home, which can lead to further deterioration of hand function and a direct impact on an individual's capability to perform essential activities of daily living (ADL). Objective: This pilot study investigated the therapeutic effect of a self-administered home-based hand rehabilitation programme for people with cervical SCI using the soft extra muscle (SEM) Glove by Bioservo Technologies AB. Methods: Fifteen participants with chronic cervical motor incomplete (AIS C and D) SCI were recruited and provided with the glove device to use at home to complete a set task and perform their usual ADL for a minimum of 4 h a day for 12 weeks. Assessment was made at Week 0 (Initial), 6, 12 and 18 (6-week follow-up). The primary outcome measure was the Toronto Rehabilitation Institute hand function test (TRI-HFT), with secondary outcome measures including pinch dynamometry and the modified Ashworth scale. Results: The TRI-HFT demonstrated improvement in hand function at Week 6 of the therapy including improvement in object manipulation (58.3 ±3.2 to 66.9 ±1.8, p ≈ 0.01), and palmar grasp assessed as the length of the wooden bar that can be held using a pronated palmar grip (29.1 ±6.0 cm to 45.8 ±6.8 cm, p <0.01). A significant improvement in pinch strength, with reduced thumb muscle hypertonia was also detected. Improvements in function were present during the Week 12 assessment and also during the follow-up. Conclusions: Self-administered rehabilitation using the SEM Glove is effective for improving and retaining gross and fine hand motor function for people living with chronic spinal cord injury at home. Retention of improved hand function suggests that an intensive activity-based rehabilitation programme in specific individuals is sufficient to
HighlightsIn a motor imagery based BCI system to control FES, practicing imagery both before and during FES additionally increases intensity of event related desynchronisation throughout the whole period of electrical stimulation.Discontinuing to practice motor imagery following the onset of FES, reduces subsequent event-related desynchronisation.Motor imagery and FES produce event-related desynchronisation in similar frequency ranges.
Chronometric and imaging studies have shown that motor imagery is used implicitly during mental rotation tasks in which subjects for example judge the laterality of human hand pictures at various orientations. Since explicit motor imagery is known to activate the sensorimotor areas of the cortex, mental rotation is expected to do similar if it involves a form of motor imagery. So far, functional magnetic resonance imaging and positron emission tomography have been used to study mental rotation and less attention has been paid to electroencephalogram (EEG) which offers a high time-frequency resolution. The time-frequency analysis is an established method for studying explicit motor imagery. Although hand mental rotation is claimed to involve motor imagery, the time-frequency characteristics of mental rotation have never been compared with those of explicit motor imagery. In this study, time-frequency responses of EEG recorded during explicit motor imagery and during a mental rotation task, inducing implicit motor imagery, were compared. Fifteen right-handed healthy volunteers performed motor imagery of hands in one condition and hand laterality judgement tasks in another while EEG of the whole head was recorded. The hand laterality judgement was the mental rotation task used to induce implicit motor imagery. The time-frequency analysis and sLORETA localisation of the EEG showed that the activities in the sensorimotor areas had similar spatial and time-frequency characteristics in explicit motor imagery and implicit motor imagery conditions. Furthermore this sensorimotor activity was different for the left and for the right hand in both explicit and implicit motor imagery. This result supports that motor imagery is used during mental rotation and that it can be detected and studied with EEG technology. This result should encourage the use of mental rotation of body parts in rehabilitation programmes in a similar manner as motor imagery.
HighlightsMotor imagery based BCI-classifier built on EEG data of paraplegic patients, gives higher classification accuracy in patients with central neuropathic pain compared to patients with no chronic pain.Higher BCI classification accuracy in paraplegic patients with central neuropathic pain is accompanied with stronger event related desynchronisation during motor imagery.BCI classification accuracy between feet and a hand was comparable with classification accuracy between hands, in all three groups of participants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.