The structure of 6-line and 2-line ferrihydrite (Fh) has been reconsidered. X-ray diffraction (XRD) curves were first simulated for the different structural models so far proposed, and it is shown that neither of these corresponds to the actual structure of ferrihydrite. On the basis of agreement between experimental and simulated XRD curves it is shown that Fh is a mixture of three components: (i) Defect-free Fh consisting of anionic ABACA... close packing in which Fe atoms occupy only octahedral sites with 50% probability; the hexagonal unit-cell parameters are a = 2.96/k and c = 9.40 A, and the space group is P31c. (ii) Defective Fh in which AClBC2A and AblCb2A structural fragments occur with equal probability and alternate completely at random; Fe atoms within each of these fragments have identical ordered distribution within the hexagonal super-cell with a = 5.126 A. (iii) Ultradispersed hematite with mean dimension of coherent scattering domains (CSD) of 10-20 A. The main structural difference between 6-line and 2-line Fh is the size of their CSD which is extremely small for the latter structure. Nearest Fe-Fe distances calculated for this new structural model are very close to those determined by EXAFS spectroscopy on the same samples.
The interlayer configuration proposed by Moore and Reynolds and commonly used to reproduce the 00ℓ reflections of bi-hydrated smectite is shown to be inconsistent with experimental X-ray diffraction data. 1 The alternative configuration of interlayer species with cations located in the mid-plane of the interlayer and one sheet of H 2 O molecules on each side of this plane is also shown to imperfectly describe the actual structure of bi-hydrated smectites. Specifically, the thermal fluctuation of atomic positions (Debye-Waller factor) used to describe the positional disorder of interlayer H 2 O molecules has to be increased to unrealistic values to satisfactorily reproduce experimental X-ray diffraction data when using this model. A new configuration is thus proposed for the interlayer structure of bi-hydrated smectite. Cations are located in the mid-plane of the interlayer whereas H 2 O molecules are scattered about two main positions according to Gaussian-shaped distributions. This configuration allows reproducing all 00ℓ reflections with a high precision, with only one new variable parameter (width of the Gaussian function). The proposed configuration is consistent with those derived from Monte-Carlo calculations and allows matching more closely the amount of interlayer water that can be determined independently from water vapor adsorption/desorption isotherm experiments. In addition, the proposed configuration of interlayer species appears valid for both dioctahedral and trioctahedral smectites exhibiting octahedral and tetrahedral substitutions, respectively, thus not allowing to differentiate these expandable 2:1 phyllosilicates from their respective interlayer configuration.
International audienceA specific methodology was developed to collate the interlayer configurations resulting from Grand-Canonical Monte Carlo (GCMC) simulations with experimental X-ray and neutron diffraction data for two synthetic Na-saturated saponites having contrasting layer charge. Numerical simulations were performed assuming different existing sets of atomic partial charge and Lennard-Jones parameters for clay and water. For each parameter set and for the two samples in both the mono- and bihydrated states, the water contents resulting from GCMC simulations were first compared to water vapor desorption gravimetry data. The density distributions of interlayer species were then used to generate 00l intensities that were compared to X-ray and neutron diffraction data, the latter being recorded on both hydrogenated and deuterated specimens. The CLAYFF model [Cygan et al. J. Phys. Chem. B2004, 108, 1255] is shown to better account for water content and organization compared to the model developed by Skipper et al. (Clays Clay Miner.1995, 43, 285) and modified by Smith (Langmuir1998, 14, 5959). However, diffraction patterns calculated for bihydrated samples from CLAYFF simulations did not match satisfactorily the diffraction data. Lennard-Jones parameters were thus modified for oxygen atoms from the clay layer. When combined with the SPC/E water model, this modified version of CLAYFF allows matching experimental water contents and fitting the complete set of diffraction data. Relevant information may thus be derived on the influence of layer charge on the orientational properties of interlayer water molecules which differs for the different clay models. Finally, the approach used in the present study proved powerful for assessing atomic interaction parameters considered for computational simulations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.