SUMMARY Studies using gravimetric analysis of lungs of frozen animals have suggested that the differences in pulmonary microvascular pressure between non-dependent and dependent lung do not influence the formation of regional pulmonary edema. We wondered if the inability to detect variation in regional extravascular lung water (EVLW) was due to the slow freezing process and, therefore, reassessed the distribution of EVLW in vertically suspended isolated perfused dog lungs with a radioisotopic technique that does not require freezing. Total lung water (TLW), blood or intravascular lung water (FVLW), and EVLW were measured in absolute quantities using a positron camera and the positron-emitting isotopes C I5O as a blood label and H 2 15O as a total lung water label. Mean isotopic TLW in 17 lungs that were normal or moderately edematous (wet:dry ratio < 7) was 142 ± 9 (SE) ml compared to the gravimetric estimate of 148 ± 7 ml (r = 0.92) and isotopic EVLW was 64 ± 6 ml compared to the gravimetric estimate of 70 ± 6 ml (r = 0.8). Analysis of the distribution of regional isotopically measured EVLW in the 17 lungs in various states of spontaneous edema formation revealed a small non-dependent to dependent, gravity-related increase in percent regional EVLW compared to percent regional TLW, which did not vary with the degree of edema in the lung. Serial measurements of absolute regional EVLW in four lungs during spontaneously developing edema also failed to show a disproportionate increase in accumulation of EVLW in any lung zone. Thus, despite the wide variation in microvascular hydrostatic pressure between-top and bottom of the vertical isolated lung, edema formation seems to be uniform.
Regional alveolar hypoxia in the lung induces regional pulmonary vasoconstriction which diverts blood flow from the hypoxic area. However, the predominant determinant of the distribution of perfusion in the normal erect lung is gravity so that more perfusion occurs at the base than at the apex. To determine the strength of the regional alveolar hypoxic response in diverting flow with or against the gravity gradient a divided tracheal cannula was placed in anesthetized dogs and unilateral alveolar hypoxia created by venilating one lung with nitrogen while ventilating the other lung with oxygen to preserve normal systemic oxygentation. Scintigrams of the distribution of perfusion obtained with intravenous 13-N and the MGH positron camera revealed a 34 and 32 per cent decrease in perfusion to the hypoxic lung in the supine and erect positions and a 26 per cent decrease in the decubitus position with the hypoxic lung dependent (P equal to 0.94 from supine shift), indicating nearly equal vasoconstriction with shift of perfusion away from the hypoxic lung in all positions. Analysis of regional shifts in perfusion revealed an equal vasoconstrictor response from apex to base in the supine position but a greater response in the lower lung zones in the erect position where perfusion was also greatest.
Regional ventilation and perfusion studies are routinely performed with molecular nitrogen-13 (a short-lived positron emitter), a multicrystal positron camera, and a computer. These studies have the advantage of viewing with equal sensitivity all sections of the lung simultaneously. Nitrogen-13 is less soluble than xenon in blood and therefore allows more accurate ventilation imaging. The short half-life of the radiopharmaceutical allows simultaneous ventilation and perfusion scintigraphy of the lung. Unlike other imaging techniques in which the residual radioactivity persists in the lung for hours, nitrogen-13 is rapidly cleared allowing repetitive imaging. Ventilation and perfusion studies are part of the routine preoperative evaluation for lung cancer resection or for bullectomy in patients with chronic obstructive pulmonary disease and for assessment of pulmonary emboli in the presence of chronic obstructive disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.