The interface pressure between the residual limb and prosthetic socket has a significant effect on the amputee’s mobility and level of comfort with their prosthesis. This paper presents a socket interface pressure (SIFP) system to compare the interface pressure differences during gait between two different types of prosthetic sockets for a transtibial amputee. The system evaluates the interface pressure in six critical regions of interest (CROI) of the lower limb amputee and identifies the peak pressures during certain moments of the gait cycle. The six sensors were attached to the residual limb in the CROIs before the participant with transtibial amputation donned a prosthetic socket. The interface pressure was monitored and recorded while the participant walked on a treadmill for 10 min at 1.4 m/s. The results show peak pressure differences of almost 0.22 kgf/cm2 between the sockets. It was observed that the peak pressure occurred at 50% of the stance phase of the gait cycle. This SIFP system may be used by prosthetists, physical therapists, amputation care centers, and researchers, as well as government and private regulators requiring comparison and evaluation of prosthetic components, components under development, and testing.
Abstract:A novel TiAlCN/CN x multilayer coating, consisting of nine TiAlCN/CN x periods with a top layer 0.5 m of CN x , was designed to enhance the corrosion resistance of CoCrMo biomedical alloy. The multilayers were deposited by dc and RF reactive magnetron sputtering from Ti 0.5 Al 0.5 and C targets respectively in a N 2 /Ar plasma. The corrosion resistance and mechanical properties of the multilayer coatings were analyzed and compared to CoCrMo bulk alloy. Ion beam analysis (IBA) and X-ray diffraction tests were used to measure the element composition profiles and crystalline structure of the films. Corrosion resistance was evaluated by means of potentiodynamic polarization measurements using simulated body fluid (SBF) at typical body temperature and the nanomechanical properties of the multilayer evaluated by nanoindentation tests were analyzed and compared to CoCrMo bulk alloy. It was found that the multilayer hardness and the elastic recovery are higher than the substrate of CoCrMo. Furthermore the coated substrate shows a better general corrosion resistance than that of the CoCrMo alloy alone with no observation of pitting corrosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.