The reversible shrink–swell behavior of expansive soil imposes a serious challenge that threatens the overlying structures’ safety and durability. Traditional chemical additives such as lime and cement still exhibit satisfying performance over their counterparts in terms of swelling potential reduction. Nevertheless, significant concerns are associated with these chemicals, in addition to their environmental impact. This paper proposes a novel application of the closed-cell one-component hydrophobic polyurethane foam (HPUF) to stabilize the swelling soil. An extensive experimental study was performed to assess the efficiency of HPUF in mitigating both the swelling and shrinkage response of high montmorillonite content expansive soil. Expansive soil was injected/mixed with different weight ratios of the proposed stabilizer, and the optimum mixing design and injection percentage of the foam resin were identified to be ranged from 10% to 15%. The shrink–swell behaviors of both injected and noninjected samples were compared. Results of this comparison confirmed that HPUF could competently reduce both the swelling potential and the shrinkage cracking of the reactive expansive soil, even after several wet-shrink cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.