Abstract. The photobleaching of the lasing dye Rhodamine 6G embedded in the solid matrix poly(methyl methacrylate) was investigated using a photoacoustic technique. Chopped laser radiation from an argon ion laser at four different wavelengths was used for the study. Experimental results indicate that the photobleaching rate is directly proportional to the incident laser power while it decreases with increase in concentration of the dye molecules. In the present case we have not observed any dependence of photobleaching on the chopping frequency. One-photon absorption is found to be responsible for the photobleaching of the dye within the selected range of laser power.
The nanosecond optical-limiting characteristics (at 532 nm) of some rare-earth metallo-phthalocyanines (Sm(Pc)2, EU(PC)2' and LaPe) doped in a copolymer matrix of poiy(methyl methacrylate) and methyl-2cyanoacrylate have been studied for the first time to our knowledge. The optical-limiting response is attributed to reverse saturable absorption due to excited-state absorption. The performance of LaPc in a copolymer host is studied at different linear transmissions. The laser damage thresholds of all the samples are also reported.
Optical fiber sensors developed for measuring pH values usually employ an unclad and unstrained section of the fiber. In this paper, we describe the design and fabrication of a microbent fiber optic sensor that can be used for pH sensing. In order to obtain the desired performance, a permanently microbent portion of a plastic optic fiber is coated with a thin film of dye impregnated sol-gel material. The measurements are simultaneously carried out in two independent detection schemes viz., the bright field detection configuration for detecting the core modes and dark field detection configuration, for detecting the cladding modes. The results of measurements of core mode-power and cladding mode-power variation with change in pH of a solution surrounding the coated portion of the fiber is presented. This paper thus demonstrates how a bare plastic fiber can be modified for pH sensing in a simple and cost effective manner.
Strong asymmetric Stark shift in excess of 115 meV of the lowest energy transition has been experimentally observed in composite GaxIn1−xAs/InP/InAsyP1−y quantum-well system. In this structure, we can independently control the confinement of electrons and holes by controlling the strain. The photoexcited electrons and holes are confined in spatially separated regions without the application of an electric field. Due to the large asymmetry in the structure, we observed large blueshifts and redshifts of the absorption edge with an applied electric field. All our measurements agree with the calculations within the framework of the Bir–Pikus strain Hamiltonian.
Photoacoustic spectrum of samarium phthalocyanine powder is recorded and compared with previously reported UV-vis absorption spectra of the same dissolved in different liquid and solid host media. The Davidov splitting of Q band is observed in the PA spectrum but the two bands are overlapped considerably and the shorter wavelength band is more intense and dominating one in the powder spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.