The use of biomass to produce energy is becoming more and more frequent as it helps to achieve a sustainable environmental scenario. However the exploitation of this fuel source does have drawbacks that need to be solved. In this work, the torrefaction of woody biomass (eucalyptus) was studied in order to improve its properties for pulverised systems. The process consists in a heating treatment at moderate temperature (220-300 ºC) under an inert atmosphere. The grindability of raw biomass and the treated samples was compared and an improvement in the grindability characteristics was observed after the torrefaction process. Thermogravimetric analysis of the samples was carried out in order to study their reactivity in air. The DTG curves of the torrefied biomass showed a double peak nature. The kinetic parameters were calculated for each reaction stage. The torrefaction process was found to influence the parameters of the first stage, whereas those corresponding to the second remained unaffected.
a b s t r a c tIn 2005, the IPCC SRCCS recognized the large potential for developing and scaling up a wide range of emerging CO 2 capture technologies that promised to deliver lower energy penalties and cost. These included new energy conversion technologies such as chemical looping and novel capture systems based on the use of solid sorbents or membrane-based separation systems. In the last 10 years, a substantial body of scientific and technical literature on these topics has been produced from a large number of R&D projects worldwide, trying to demonstrate these concepts at increasing pilot scales, test and model the performance of key components at bench scale, investigate and develop improved functional materials, optimize the full process schemes with a view to a wide range of industrial applications, and to carry out more rigorous cost studies etc. This paper presents a general and critical review of the state of the art of these emerging CO 2 capture technologies paying special attention to specific process routes that have undergone a substantial increase in technical readiness level toward the large scales required by any CO 2 capture system.
The reduction of anthropogenic CO 2 emissions to address the consequences of climate change is a matter of concern for all developed countries. In the short term, one of the most viable options for reducing carbon emissions is to capture and store CO 2 at large stationary sources. Adsorption with solid sorbents is one of the most promising options. In this work, two series of materials were prepared from two commercial activated carbons, C and R, by heat treatment with gaseous ammonia at temperatures in the 200-800 ºC range. The aim was to improve the selectivity and capacity of the sorbents to capture CO 2 , by introducing basic nitrogen functionalities into the carbons. The sorbents were characterised in terms of texture and chemical composition. Their surface chemistry was studied through temperature programmed desorption tests and X-ray photoelectron spectroscopy. The capture performance of the carbons was evaluated by using a thermogravimetric analyser to record mass uptakes by the samples when exposed to a CO 2 atmosphere.
Calcium looping, CaL, is rapidly developing as a postcombustion CO 2 capture technology because its similarity to existing power plants using circulating fluidized bed combustors, CFBC. In this work we present experimental results from a pilot built to demonstrate the concept at the MW th scale. The pilot plant treats 1/150 of the flue gases of an existing CFBC power plant ("la Pereda") and it has been operated in steady state for hundreds of hours of accumulated experimental time. The pilot includes two 15 m height interconnected circulating fluidized bed reactors: a CO 2 absorber (or carbonator of CaO) and a continuous CaCO 3 calciner operated as an oxy-fuel CFBC. Operating conditions in the reactors are resembling those expected in large CaL CO 2 capture systems in terms of reactor temperatures, gas velocities, solid compositions and circulation rates and reaction atmospheres. The evolution of CO 2 capture efficiencies, solid properties (CO 2 carrying capacity and CaO conversion to CaCO 3 and CaSO 4) have been studied as a function of key operating conditions. It is demonstrated that CO 2 capture efficiencies over 90% are feasible with a supply of active CaO slightly over the molar flow of CO 2 entering the carbonator. Closure of carbon and sulphur balances has been satisfactory during steady state periods. A basic reactor model developed from smaller test facilities seems to provide a reasonable interpretation of the observed trends. This should facilitate the further scale up of this new technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.