This study evaluated the effects of Bifidobacterium longum 51A on the intestinal mucosa and inflammatory response in experimental colitis. Colitis was induced by administration of 3.5% dextran sodium sulphate (DSS) solution for 7 days. Two periods of administration were performed: treatment (T) group, mice received Bifidobacterium only during disease induction (7 days); total treatment (TT) group, mice received Bifidobacterium for 10 days before and during disease induction. The probiotic effects on intestinal permeability, inflammatory infiltrate, histological analysis, cytokines, chemokines and sIgA were evaluated. Bifidobacterium administration in the T group showed reduction in intestinal permeability and lower IL-1β, myeloperoxidase, and eosinophil peroxidase levels compared to those in the colitis group (P<0.05). Bifidobacterium administration in the TT group attenuated severe lesions in the colon and reduced eosinophil peroxidase level (P<0.05). B. longum 51A treatment modality was more effective than total treatment and reduced the inflammatory response and its consequences on intestinal epithelium.
Toxoplasmosis represents one of the most common zoonoses worldwide. Its agent, Toxoplasma gondii, causes a severe innate pro-inflammatory response. The indigenous intestinal microbiota promotes host animal homoeostasis and may protect the host against pathogens. Germ-free (GF) animals provide an important tool for the study of interactions between host and microbiota. In this study, we assessed the role of indigenous microorganisms in disease development utilizing a murine toxoplasmosis model, which includes conventional (CV) and GF NIH Swiss mice. CV and GF mice orally inoculated with T. gondii had similar survival curves. However, disease developed differently in the two animal groups. In CV mice, intestinal permeability increased and levels of intestinal pro-inflammatory cytokines were altered. In GF animals, there were discrete epithelial degenerative changes and mucosal oedema, but the liver and lungs displayed significant lesions. We conclude that, despite similar survival curves, CV animals succumb to an exaggerated inflammatory response, whereas GF mice fail to produce an adequate systemic response.
The indigenous microbiota is the population of microorganisms normally present on the surface and mucosa of an individual, where it performs essential health functions, including the colonisation resistance (CR) against pathogens. To identify the bacteria responsible and the mechanisms involved in the CR, the germ-free (GF) animal model has been used, because in vitro studies cannot always be extrapolated to what occurs in vivo. In this study, ex vivo antagonism assays against seven enteropathogenic bacteria using stools from 15 healthy human donors confirmed that the CR showed individual variation. Using in vitro antagonism assays, 14 strains isolated from dominant faecal microbiota of donors with elevated CR were selected for mono-association in GF mice to test the in vivo antagonism against Salmonella enterica ser. Typhimurium. Mice mono-associated with Enterococcus hirae strain 8.2, Bacteroides thetaiotaomicron strain 16.2 and Lactobacillus ruminis strain 18.1 had significant reductions in faecal counts of the pathogen during the challenge. After five days of infection, the group associated with E. hirae 8.2 showed a reduction in the translocation of S. Typhimurium to the spleen, while the group associated with L. ruminis 18.1 presented an increased translocation to the liver. The histological data confirmed these results and revealed that the mice associated with E. hirae 8.2 showed fewer lesions on ileum and liver, compared to the damage caused by S. Typhimurium alone, while in mice associated with L. ruminis 18.1 there was significantly worse lesions. Concluding, from the dominant faecal microbiota from healthy human with high CR, through ex vivo, in vitro and in vivo assays, a bacterium was characterised for its high CR potential, being a candidate for probiotic use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.