Summary
Seaweeds have been used as a source of natural fertilizer and biostimulant in agriculture for centuries. However, their effects on soil and crop root microbiota remain unclear. Here, we used a commercially available Ascophyllum nodosum extract (ANE) to test its effect on bacterial and fungal communities of rhizospheric soils and roots of pepper and tomato plants in greenhouse trials. Two independent trials were conducted in a split‐block design. We used amplicon sequencing targeting fungal ITS and bacterial 16S rRNA gene to determine microbial community structure changes. We find that productivity parameters of root, shoot and fruit biomass were positively and significantly influenced by the ANE amendment. In addition, a‐diversity differed significantly between amended and control plants, but only in some of the experimental conditions. Species composition among sites (b‐diversity) differed according to the amendment treatment in all four communities (fungal‐root, fungal‐soil, bacterial‐root and bacterial‐soil). Finally, we identified a number of candidate taxa most strongly correlated with crop yield increases. Further studies on isolation and characterization of these microbial taxa linked to the application of liquid seaweed extract may help to enhance crop yield in sustainable agro‐ecosystems.
Insects and pathogenic infections (bacteria, viruses and fungi) cause huge losses in agriculturally important crops yearly. Due to the rise in pesticide and antibiotic resistance, our crops and livestock are increasingly at risk. There is a rising demand for environmentally friendly solutions to prevent crop decreases. Components of Ascophyllum nodosum seaweed extracts were recently found to boost plant immunity. The stimulatory activities of the A.
nodosum marine alga-derived extract (Stella Maris®) were investigated in a broad range of immune assays. Elevated hydrogen peroxide production measured in a chemiluminescence assay suggested that the extract elicited a strong burst of reactive oxygen species. Arabidopsis seedlings treated with Stella Maris® activated the expression of WRKY30, CYP71A12 and PR-1 genes, the induction of which represent early, mid and late plant immune response, respectively. Finally, this study found that Stella Maris® inhibited the growth of multiple bacterial pathogens, including an opportunistic human pathogen that has demonstrated pathogenicity in plants. In summary, the pre-treatment with the seaweed extract protected Arabidopsis against subsequent infection by these pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.