We studied the effect of arbuscular mycorrhizal (AM) fungus, Glomus constrictum (Trappe), and soil phosphorus (P) on gas-exchange parameters, growth, and nutrition of soybean plants grown in pots with sterilized soil. Two contrasting concentrations of KH 2 PO 4 , i.e. no added and 0.5 g(P) kg -1 (soil), were used. Addition of soluble phosphate increased all growth parameters, P and N concentrations, and most of the studied photosynthetic parameters of both the mycorrhizal and nonmycorrhizal plants. The mycorrhizal inoculation significantly increased plant growth responses, P and N concentrations in shoot and root tissues, acid and alkaline phosphatase activities, and total soluble proteins in root tissues compared with the nonmycorrhizal plants. The stimulations were related to the level of the mycorrhizal colonization in the root tissues. The mycorrhizal plants showed significantly higher net photosynthetic rate, stomatal conductance, and transpiration rate than those of nonmycorrhizal plants, especially in soil without added P. The phosphate addition to soil reduced generally the percentage of the mycorrhizal colonization in the root tissues, and consequently the mycorrhizal benefits. In general, growth, nutrition, and photosynthetic parameters of the soybean plants showed a high degree of dependency on the mycorrhizal fungus in nonfertilized soil when compared with the soil fertilized with P. This study confirmed that AM colonization could improve growth and nutrition of the soybean plant through increasing photosynthesis in leaves, particularly at low P in soil.Additional key words: arbuscular mycorrhizal symbiosis; depletion zone; inoculum; root/shoot ratio.