The relative importance of common activities on indoor nitrous acid (HONO) mixing ratios was explored during high time resolution, month-long measurements by chemical ionization mass spectrometry in a previously unoccupied house. Indoor HONO varied from 0.2 to 84.0 ppb (mean: 5.5 ppb; median 3.8 ppb), an order of magnitude higher than simultaneously measured outdoor values, indicating important indoor sources. They agree well with simultaneous measurements of HONO by Laser-Photofragmentation/Laser-Induced Fluorescence. Before any combustion activities, the mixing ratio of 3.0 ± 0.3 ppb is indicative of secondary sources such as multiphase formation from NO2. Cooking (with propane gas), especially the use of an oven, led to significant enhancements up to 84 ppb, with elevated mixing ratios persisting for a few days due to slow desorption from indoor surface reservoirs. Floor bleach cleaning led to prolonged, substantial decreases of up to 71–90% due to reactive processes. Air conditioning modulated HONO mixing ratios driven by condensation to wet surfaces in the AC unit. Enhanced ventilation also significantly lowered mixing ratios. Other conditions including human occupancy, ozone addition, and cleaning with terpene, natural product, and vinegar cleaners had a much smaller influence on HONO background levels measured following these activities.
Abstract. Reactions of the hydroxyl (OH) and peroxy (HO2 and RO2) radicals play a central role in the chemistry of the atmosphere. In addition to controlling the lifetimes of many trace gases important to issues of global climate change, OH radical reactions initiate the oxidation of volatile organic compounds (VOCs) which can lead to the production of ozone and secondary organic aerosols in the atmosphere. Previous measurements of these radicals in forest environments characterized by high mixing ratios of isoprene and low mixing ratios of nitrogen oxides (NOx) (typically less than 1–2 ppb) have shown serious discrepancies with modeled concentrations. These results bring into question our understanding of the atmospheric chemistry of isoprene and other biogenic VOCs under low NOx conditions. During the summer of 2015, OH and HO2 radical concentrations, as well as total OH reactivity, were measured using laser-induced fluorescence–fluorescence assay by gas expansion (LIF-FAGE) techniques as part of the Indiana Radical Reactivity and Ozone productioN InterComparison (IRRONIC). This campaign took place in a forested area near Indiana University's Bloomington campus which is characterized by high mixing ratios of isoprene (average daily maximum of approximately 4 ppb at 28 ∘C) and low mixing ratios of NO (diurnal average of approximately 170 ppt). Supporting measurements of photolysis rates, VOCs, NOx, and other species were used to constrain a zero-dimensional box model based on the Regional Atmospheric Chemistry Mechanism (RACM2) and the Master Chemical Mechanism (MCM 3.2), including versions of the Leuven isoprene mechanism (LIM1) for HOx regeneration (RACM2-LIM1 and MCM 3.3.1). Using an OH chemical scavenger technique, the study revealed the presence of an interference with the LIF-FAGE measurements of OH that increased with both ambient concentrations of ozone and temperature with an average daytime maximum equivalent OH concentration of approximately 5×106 cm−3. Subtraction of the interference resulted in measured OH concentrations of approximately 4×106 cm−3 (average daytime maximum) that were in better agreement with model predictions although the models underestimated the measurements in the evening. The addition of versions of the LIM1 mechanism increased the base RACM2 and MCM 3.2 modeled OH concentrations by approximately 20 % and 13 %, respectively, with the RACM2-LIM1 mechanism providing the best agreement with the measured concentrations, predicting maximum daily OH concentrations to within 30 % of the measured concentrations. Measurements of HO2 concentrations during the campaign (approximately a 1×109 cm−3 average daytime maximum) included a fraction of isoprene-based peroxy radicals (HO2*=HO2+αRO2) and were found to agree with model predictions to within 10 %–30 %. On average, the measured reactivity was consistent with that calculated from measured OH sinks to within 20 %, with modeled oxidation products accounting for the missing reactivity, however significant missing reactivity (approximately 40 % of the total measured reactivity) was observed on some days.
Surface cleaning using commercial disinfectants, which has recently increased during the coronavirus disease 2019 pandemic, can generate secondary indoor pollutants both in gas and aerosol phases. It can also affect indoor air quality and health, especially for workers repeatedly exposed to disinfectants. Here, we cleaned the floor of a mechanically ventilated office room using a commercial cleaner while concurrently measuring gas-phase precursors, oxidants, radicals, secondary oxidation products, and aerosols in real-time; these were detected within minutes after cleaner application. During cleaning, indoor monoterpene concentrations exceeded outdoor concentrations by two orders of magnitude, increasing the rate of ozonolysis under low (<10 ppb) ozone levels. High number concentrations of freshly nucleated sub–10-nm particles (≥10 5 cm −3 ) resulted in respiratory tract deposited dose rates comparable to or exceeding that of inhalation of vehicle-associated aerosols.
Historically air constituents have been assumed to be well mixed in indoor environments, with single point measurements and box modeling representing a room or a house. Here we demonstrate that this fundamental assumption needs to be revisited through advanced model simulations and extensive measurements of bleach cleaning. We show that inorganic chlorinated products, such as hypochlorous acid and chloramines generated via multiphase reactions, exhibit spatial and vertical concentration gradients in a room, with short-lived ⋅OH radicals confined to sunlit zones, close to windows. Spatial and temporal scales of indoor constituents are modulated by rates of chemical reactions, surface interactions and building ventilation, providing critical insights for better assessments of human exposure to hazardous pollutants, as well as the transport of indoor chemicals outdoors.
The hydroxyl radical (OH) is the dominant oxidant in the outdoor environment, controlling the lifetimes of volatile organic compounds (VOCs) and contributing to the growth of secondary organic aerosols. Despite its importance outdoors, there have been relatively few measurements of the OH radical in indoor environments. During the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign, elevated concentrations of OH were observed near a window during cooking events, in addition to elevated mixing ratios of nitrous acid (HONO), VOCs, and nitrogen oxides (NO X ). Particularly high concentrations were measured during the preparation of a traditional American Thanksgiving dinner, which required the use of a gas stove and oven almost continually for 6 h. A zero-dimensional chemical model underpredicted the measured OH concentrations even during periods when direct sunlight illuminated the area near the window, which increases the rate of OH production by photolysis of HONO. Interferences with measurements of nitrogen dioxide (NO2) and ozone (O3) suggest that unmeasured photolytic VOCs were emitted during cooking events. The addition of a VOC that photolyzes to produce peroxy radicals (RO2), similar to pyruvic acid, into the model results in better agreement with the OH measurements. These results highlight our incomplete understanding of the nature of oxidation in indoor environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.