High fat diets and obesity pose serious health problems, such as type II diabetes and cardiovascular disease. Impaired cognitive function is also associated with high fat intake. In this study, we show that just four weeks of feeding a diet rich in fat ad libitum decreased hippocampal neurogenesis in male, but not female, rats. There was no obesity, but male rats fed a diet rich in fat exhibited elevated serum corticosterone levels compared to those fed standard rat chow. These data indicate that high dietary fat intake can disrupt hippocampal neurogenesis, probably through an increase in serum corticosterone levels, and that males are more susceptible than females.
In this study, we investigated in rats if hydroxycitric acid (HCA) reduces the postprandial glucose response by affecting gastric emptying or intestinal glucose absorption. We compared the effect of regulator HCA (310 mg/kg) and vehicle (control) on the glucose response after an intragastric or intraduodenal glucose load to investigate the role of altered gastric emptying. Steele's one-compartment model was used to investigate the effect of HCA on systemic glucose appearance after an intraduodenal glucose load, using [U-(13)C]-labeled glucose and d-[6,6-(2)H(2)]-labeled glucose. Because an effect on postabsorptive glucose clearance could not be excluded, the effect of HCA on the appearance of enterally administered glucose in small intestinal tissue, liver, and portal and systemic circulation was determined by [U-(14)C]glucose infusion. Data show that HCA treatment delays the intestinal absorption of enterally administered glucose at the level of the small intestinal mucosa in rats. HCA strongly attenuated postprandial blood glucose levels after both intragastric (P < 0.01) and intraduodenal (P < 0.001) glucose administration, excluding a major effect of HCA on gastric emptying. HCA delayed the systemic appearance of exogenous glucose but did not affect the total fraction of glucose absorbed over the study period of 150 min. HCA treatment decreased concentrations of [U-(14)C]glucose in small intestinal tissue at 15 min after [U-(14)C]glucose administration (P < 0.05), in accordance with the concept that HCA delays the enteral absorption of glucose. These data support a possible role for HCA as food supplement in lowering postprandial glucose profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.